Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Inter-domain Resource Collaboration in Satellite Networks: An Intelligent Scheduling Approach Towards Hybrid Missions (2312.09621v1)

Published 15 Dec 2023 in eess.SY and cs.SY

Abstract: Since the next-generation satellite network consisting of various service function domains, such as communication, observation, navigation, etc., is moving towards large-scale, using single-domain resources is difficult to provide satisfied and timely service guarantees for the rapidly increasing mission demands of each domain. Breaking the barriers of independence of resources in each domain, and realizing the cross-domain transmission of missions to efficiently collaborate inter-domain resources is a promising solution. However, the hybrid scheduling of different missions and the continuous increase in the number of service domains have strengthened the differences and dynamics of mission demands, making it challenging for an efficient cross-domain mission scheduling (CMS). To this end, this paper first accurately characterizes the communication resource state of inter-satellite in real-time exploiting the sparse resource representation scheme, and systematically characterizes the differentiation of mission demands by conducting the mission priority model. Based on the information of resources and missions, we construct the top- and bottom-layer mission scheduling models of reward association exploiting the correlation of intra- and inter-domain mission scheduling and formulate the Markov decision process-based hierarchical CMS problem. Further, to achieve higher adaptability and autonomy of CMS and efficiently mitigate the impact of network scale, a hierarchical intelligent CMS algorithm is developed to dynamically adjust and efficiently match the CMS policy according to different mission demands. Simulation results demonstrate that the proposed algorithm has significant performance gain compared with independent domains and the existing CMS algorithms, and can still guarantee high service performance under different network scales.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. B. Deng, C. Jiang, H. Yao, S. Guo, and S. Zhao, “The next generation heterogeneous satellite communication networks: Integration of resource management and deep reinforcement learning,” IEEE Wireless Commun., vol. 27, no. 2, pp. 105–111, Apr. 2020.
  2. H. Xie, Y. Zhan, G. Zeng, and X. Pan, “LEO mega-constellations for 6G global coverage: Challenges and opportunities,” IEEE Access, vol. 9, pp. 164 223–164 244, Dec. 2021.
  3. P. Wang, B. Di, and L. Song, “Mega-constellation design for integrated satellite-terrestrial networks for global seamless connectivity,” IEEE Wireless Commun. Lett., vol. 11, no. 8, pp. 1669–1673, Aug. 2022.
  4. M. Sheng, D. Zhou, W. Bai, J. Liu, H. Li, Y. Shi, and J. Li, “Coverage enhancement for 6G satellite-terrestrial integrated networks: performance metrics, constellation configuration and resource allocation,” Sci. China Inf. Sci., vol. 66, no. 3, pp. 1–20, Feb. 2023.
  5. J. Radtke, C. Kebschull, and E. Stoll, “Interactions of the space debris environment with mega constellations - using the example of the OneWeb constellation,” Acta Astronaut., vol. 131, pp. 55–68, Feb. 2017.
  6. T. Pultarova, “Telecommunications - space tycoons go head to head over mega satellite network [news briefing],” Eng. Technol., vol. 10, no. 2, p. 20, Mar. 2015.
  7. Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO satellite communications: Architectures and key technologies,” IEEE Wireless Commun., vol. 26, no. 2, pp. 55–61, Apr. 2019.
  8. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, May/June 2020.
  9. J. A. Ruiz-de Azua, L. Fernandez, M. Badia, A. Marton, N. Garzaniti, A. Calveras, A. Golkar, and A. Camps, “Demonstration of the federated satellite systems concept for future earth observation satellite missions,” in Proc. IGARSS 2020, Waikoloa, HI, USA, Sept. 2020, pp. 3574–3577.
  10. Q. Hao, M. Sheng, D. Zhou, and Y. Shi, “A multi-aspect expanded hypergraph enabled cross-domain resource management in satellite networks,” IEEE Trans. Commun., vol. 70, no. 7, pp. 4687–4701, July 2022.
  11. H. He, D. Zhou, M. Sheng, and J. Li, “Hierarchical cross-domain satellite resource management: An intelligent collaboration perspective,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2201–2215, Apr. 2023.
  12. C.-Q. Dai, C. Li, S. Fu, J. Zhao, and Q. Chen, “Dynamic scheduling for emergency tasks in space data relay network,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 795–807, Jan. 2021.
  13. A. Marahatta, S. Pirbhulal, F. Zhang, R. M. Parizi, K.-K. R. Choo, and Z. Liu, “Classification-based and energy-efficient dynamic task scheduling scheme for virtualized cloud data center,” IEEE Trans. Cloud Comput., vol. 9, no. 4, pp. 1376–1390, Oct.-Dec. 2021.
  14. D. Zhou, M. Sheng, B. Li, J. Li, and Z. Han, “Distributionally robust planning for data delivery in distributed satellite cluster network,” IEEE Trans. Wireless Commun., vol. 18, no. 7, pp. 3642–3657, July 2019.
  15. Q. Qi, L. Zhang, J. Wang, H. Sun, Z. Zhuang, J. Liao, and F. R. Yu, “Scalable parallel task scheduling for autonomous driving using multi-task deep reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 861–13 874, Nov. 2020.
  16. D. Zhou, M. Sheng, J. Li, and Z. Han, “Aerospace integrated networks innovation for empowering 6G: A survey and future challenges,” IEEE Commun. Surv. Tutorials, vol. 25, no. 2, pp. 975–1019, Feb. 2023.
  17. D. Zhou, M. Sheng, R. Liu, Y. Wang, and J. Li, “Channel-aware mission scheduling in broadband data relay satellite networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 5, pp. 1052–1064, May 2018.
  18. L. Wang, C. Jiang, L. Kuang, S. Wu, H. Huang, and Y. Qian, “High-efficient resource allocation in data relay satellite systems with users behavior coordination,” IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 12 072–12 085, Dec. 2018.
  19. P. Li, J. Li, H. Li, S. Zhang, and G. Yang, “Graph based task scheduling algorithm for earth observation satellites,” in Proc. IEEE GLOBECOM, Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–7.
  20. X. Chen, X. Li, X. Wang, Q. Luo, and G. Wu, “Task scheduling method for data relay satellite network considering breakpoint transmission,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 844–857, 2021.
  21. G. Wu, Q. Luo, Y. Zhu, X. Chen, Y. Feng, and W. Pedrycz, “Flexible task scheduling in data relay satellite networks,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 2, pp. 1055–1068, Apr. 2022.
  22. J. Wang, X. Zhu, D. Qiu, and L. T. Yang, “Dynamic scheduling for emergency tasks on distributed imaging satellites with task merging,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 9, pp. 2275–2285, Sept. 2014.
  23. S. Haiquan, X. Wei, H. Xiaoxuan, and X. Chongyan, “Earth observation satellite scheduling for emergency tasks,” J. Syst. Eng. Electron., vol. 30, no. 5, pp. 931–945, Oct. 2019.
  24. Z. Liu and W. Xiong, “A DQN-based hyperheuristic algorithm for emergency scheduling of earth observation satellites,” in Proc. CECIT, Sanya, China, Dec. 2021, pp. 39–47.
  25. B. Deng, C. Jiang, L. Kuang, S. Guo, N. Ge, and J. Lu, “Preemptive dynamic scheduling algorithm for data relay satellite systems,” in Proc. IEEE ICC, Paris, France, May 2017, pp. 1–6.
  26. B. Deng, C. Jiang, L. Kuang, S. Guo, J. Lu, and S. Zhao, “Two-phase task scheduling in data relay satellite systems,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1782–1793, Feb. 2018.
  27. C. Bao, M. Sheng, D. Zhou, Y. Shi, and J. Li, “Towards intelligent cross-domain resource coordinate scheduling for satellite networks,” IEEE Trans. Wireless Commun., 2023, Early Access.
  28. Q. Chen, G. Giambene, L. Yang, C. Fan, and X. Chen, “Analysis of inter-satellite link paths for LEO mega-constellation networks,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2743–2755, Mar. 2021.
  29. J. L. Laso Fernández, “Study, modelling and design of intersatellite links (ISL) in millimeter-wave band/estudio, modelado y diseño de enlaces intersatelitales (ISL) en bandas de milimétricas,” Telecomunicacion, July 2020.
  30. D. Zhou, M. Sheng, J. Luo, R. Liu, J. Li, and Z. Han, “Collaborative data scheduling with joint forward and backward induction in small satellite networks,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3443–3456, May 2019.
  31. S. Fu, J. Gao, and L. Zhao, “Integrated resource management for terrestrial-satellite systems,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3256–3266, Mar. 2020.
  32. R. Liu, M. Sheng, K.-S. Lui, X. Wang, Y. Wang, and D. Zhou, “An analytical framework for resource-limited small satellite networks,” IEEE Commun. Lett., vol. 20, no. 2, pp. 388–391, Feb. 2016.
  33. J. Wu, J. Zhang, J. Yang, and L. Xing, “Research on task priority model and algorithm for satellite scheduling problem,” IEEE Access, vol. 7, pp. 103 031–103 046, July 2019.
  34. T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement learning for large-scale traffic signal control,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 3, pp. 1086–1095, Mar. 2020.
  35. A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics of learning in deep linear neural networks,” arXiv preprint arXiv:1312.6120, Dec. 2013.
  36. A. Golkar and I. Lluch i Cruz, “The federated satellite systems paradigm: Concept and business case evaluation,” Acta Astronautica, vol. 111, pp. 230–248, June 2015.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.