Deep Generative Models for Detector Signature Simulation: A Taxonomic Review (2312.09597v2)
Abstract: In modern collider experiments, the quest to explore fundamental interactions between elementary particles has reached unparalleled levels of precision. Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions (the final state particles of hard scattering interactions). The complete simulation of them in a detector is a computational and storage-intensive task. To address this computational bottleneck in particle physics, alternative approaches have been developed, introducing additional assumptions and trade off accuracy for speed.The field has seen a surge in interest in surrogate modeling the detector simulation, fueled by the advancements in deep generative models. These models aim to generate responses that are statistically identical to the observed data. In this paper, we conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures from both methodological and application-wise perspectives. Initially, we formulate the problem of detector signature simulation and discuss its different variations that can be unified. Next, we classify the state-of-the-art methods into five distinct categories based on their underlying model architectures, summarizing their respective generation strategies. Finally, we shed light on the challenges and opportunities that lie ahead in detector signature simulation, setting the stage for future research and development.
- Geoffrey E. Hinton and J. Sejnowski “OPTIMAL PERCEPTUAL INFERENCE”, 1983 URL: https://www.semanticscholar.org/paper/OPTIMAL-PERCEPTUAL-INFERENCE-Hinton-Sejnowski/1718965f492d4e9fe1d98a3fb83efe671a4aed2c
- Geoffrey E. Hinton “Training products of experts by minimizing contrastive divergence” In Neural Computation 14.8, 2002, pp. 1771–1800 DOI: 10.1162/089976602760128018
- Geoffrey E. Hinton, Simon Osindero and Yee-Whye Teh “A fast learning algorithm for deep belief nets” In Neural Computation 18.7, 2006, pp. 1527–1554 DOI: 10.1162/neco.2006.18.7.1527
- Jakub M. Tomczak “Deep Generative Modeling” Cham: Springer International Publishing, 2022 DOI: 10.1007/978-3-030-93158-2
- Luke Oliveira, Michela Paganini and Benjamin Nachman “Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis” arXiv:1701.05927 [hep-ex, physics:physics, stat] In Computing and Software for Big Science 1.1, 2017, pp. 4 DOI: 10.1007/s41781-017-0004-6
- “New directions for surrogate models and differentiable programming for High Energy Physics detector simulation” arXiv:2203.08806 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 DOI: 10.48550/arXiv.2203.08806
- “Machine Learning and LHC Event Generation” arXiv:2203.07460 [hep-ex, physics:hep-ph] In SciPost Physics 14.4, 2023, pp. 079 DOI: 10.21468/SciPostPhys.14.4.079
- “Geant4—a simulation toolkit” In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3, 2003, pp. 250–303 DOI: 10.1016/S0168-9002(03)01368-8
- “Geant4 developments and applications” Conference Name: IEEE Transactions on Nuclear Science In IEEE Transactions on Nuclear Science 53.1, 2006, pp. 270–278 DOI: 10.1109/TNS.2006.869826
- “Recent developments in Geant4 - ScienceDirect” URL: https://www.sciencedirect.com/science/article/pii/S0168900216306957
- “GANplifying Event Samples” arXiv:2008.06545 [hep-ex, physics:hep-ph, physics:physics, stat] In SciPost Physics 10.6, 2021, pp. 139 DOI: 10.21468/SciPostPhys.10.6.139
- “Calomplification – The Power of Generative Calorimeter Models” arXiv:2202.07352 [hep-ex, physics:hep-ph] In Journal of Instrumentation 17.09, 2022, pp. P09028 DOI: 10.1088/1748-0221/17/09/P09028
- Konstantin T. Matchev, Alexander Roman and Prasanth Shyamsundar “Uncertainties associated with GAN-generated datasets in high energy physics” arXiv:2002.06307 [hep-ex, physics:hep-ph, physics:physics] In SciPost Physics 12.3, 2022, pp. 104 DOI: 10.21468/SciPostPhys.12.3.104
- Hosein Hashemi “Out-of-Distribution Multi-set Generation with Context Extrapolation for Amortized Simulation and Inverse Problems” Soon to Appear
- Kunihiko Fukushima “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position” In Biological Cybernetics 36.4, 1980, pp. 193–202 DOI: 10.1007/BF00344251
- Petar Veličković “Everything is Connected: Graph Neural Networks” arXiv:2301.08210 [cs, stat] In Current Opinion in Structural Biology 79, 2023, pp. 102538 DOI: 10.1016/j.sbi.2023.102538
- “Deep Sets” arXiv:1703.06114 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1703.06114
- “Controlled Selection–A Technique in Probability Sampling” Publisher: [American Statistical Association, Taylor & Francis, Ltd.] In Journal of the American Statistical Association 45.251, 1950, pp. 350–372 DOI: 10.2307/2280293
- Diederik P. Kingma and Max Welling “Auto-Encoding Variational Bayes” arXiv:1312.6114 [cs, stat] arXiv, 2022 DOI: 10.48550/arXiv.1312.6114
- Danilo Jimenez Rezende, Shakir Mohamed and Daan Wierstra “Stochastic Backpropagation and Approximate Inference in Deep Generative Models” arXiv:1401.4082 [cs, stat] arXiv, 2014 DOI: 10.48550/arXiv.1401.4082
- Yuri Burda, Roger Grosse and Ruslan Salakhutdinov “Importance Weighted Autoencoders” arXiv:1509.00519 [cs, stat] arXiv, 2016 DOI: 10.48550/arXiv.1509.00519
- Radford M. Neal “Annealed importance sampling” In Statistics and Computing 11.2, 2001, pp. 125–139 DOI: 10.1023/A:1008923215028
- “Differentiable Annealed Importance Sampling and the Perils of Gradient Noise”, 2021 URL: https://openreview.net/forum?id=6rqjgrL7Lq
- “Nested Variational Inference” In Advances in Neural Information Processing Systems 34 Curran Associates, Inc., 2021, pp. 20423–20435 URL: https://proceedings.neurips.cc/paper/2021/hash/ab49b208848abe14418090d95df0d590-Abstract.html
- “Generating Sentences from a Continuous Space” arXiv:1511.06349 [cs] arXiv, 2016 DOI: 10.48550/arXiv.1511.06349
- Danilo Jimenez Rezende and Fabio Viola “Taming VAEs” arXiv:1810.00597 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1810.00597
- “Integer Discrete Flows and Lossless Compression” arXiv:1905.07376 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1905.07376
- “IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression” arXiv:2006.12459 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2006.12459
- George Papamakarios, David C. Sterratt and Iain Murray “Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows” arXiv:1805.07226 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1805.07226
- Lucas Theis, Aäron van den Oord and Matthias Bethge “A note on the evaluation of generative models” arXiv:1511.01844 [cs, stat] arXiv, 2016 DOI: 10.48550/arXiv.1511.01844
- Danilo Jimenez Rezende and Shakir Mohamed “Variational Inference with Normalizing Flows” arXiv:1505.05770 [cs, stat] arXiv, 2016 DOI: 10.48550/arXiv.1505.05770
- “Sylvester Normalizing Flows for Variational Inference” arXiv:1803.05649 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1803.05649
- A.-M. Magnan “HGCAL: a High-Granularity Calorimeter for the endcaps of CMS at HL-LHC” In Journal of Instrumentation 12.01, 2017, pp. C01042 DOI: 10.1088/1748-0221/12/01/C01042
- “Chapter 1: High-Luminosity Large Hadron Collider” In CERN Yellow Reports: Monographs 10, 2020, pp. 1–1 DOI: 10.23731/CYRM-2020-0010.1
- “Status of the BELLE II Pixel Detector” Conference Name: 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging In Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022) 420 SISSA Medialab, 2023, pp. 005 DOI: 10.22323/1.420.0005
- “Belle II Technical Design Report” arXiv:1011.0352 [hep-ex, physics:physics] arXiv, 2010 DOI: 10.48550/arXiv.1011.0352
- Jürgen Schmidhuber “Making the world differentiable: on using self supervised fully recurrent neural networks for dynamic reinforcement learning and planning in non-stationary environments” Google-Books-ID: 9c2sHAAACAAJ Inst. für Informatik, 1990
- “Generative Adversarial Networks” arXiv:1406.2661 [cs, stat] arXiv, 2014 DOI: 10.48550/arXiv.1406.2661
- “Statistics and Neural Networks: Advances at the Interface - Google Books” URL: https://books.google.de/books/about/Statistics_and_Neural_Networks.html?id=9p8myYozxBUC&redir_esc=y
- “GATSBI: Generative Adversarial Training for Simulation-Based Inference” arXiv:2203.06481 [cs, stat] arXiv, 2022 DOI: 10.48550/arXiv.2203.06481
- Kaustuv Datta, Deepak Kar and Debarati Roy “Unfolding with Generative Adversarial Networks” arXiv:1806.00433 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2018 DOI: 10.48550/arXiv.1806.00433
- “How to GAN away Detector Effects” arXiv:1912.00477 [hep-ph] In SciPost Physics 8.4, 2020, pp. 070 DOI: 10.21468/SciPostPhys.8.4.070
- Axel Sauer, Katja Schwarz and Andreas Geiger “StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets” arXiv:2202.00273 [cs] arXiv, 2022 DOI: 10.48550/arXiv.2202.00273
- “FFHQ 1024 x 1024 Benchmark (Image Generation) | Papers With Code” URL: https://paperswithcode.com/sota/image-generation-on-ffhq-1024-x-1024
- “Ultra-High-Resolution Detector Simulation with Intra-Event Aware GAN and Self-Supervised Relational Reasoning” arXiv:2303.08046 [hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2303.08046
- Yoshua Bengio, Réjean Ducharme and Pascal Vincent “A Neural Probabilistic Language Model” In Advances in Neural Information Processing Systems 13 MIT Press, 2000 URL: https://papers.nips.cc/paper_files/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
- “Generative Modeling by Estimating Gradients of the Data Distribution” arXiv:1907.05600 [cs, stat] arXiv, 2020 DOI: 10.48550/arXiv.1907.05600
- Yang Song and Diederik P. Kingma “How to Train Your Energy-Based Models” arXiv:2101.03288 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2101.03288
- “Deep Unsupervised Learning using Nonequilibrium Thermodynamics” ISSN: 1938-7228 In Proceedings of the 32nd International Conference on Machine Learning PMLR, 2015, pp. 2256–2265 URL: https://proceedings.mlr.press/v37/sohl-dickstein15.html
- “Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit” arXiv:1905.09883 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1905.09883
- “Improved Variational Inference with Inverse Autoregressive Flow” In Advances in Neural Information Processing Systems 29 Curran Associates, Inc., 2016 URL: https://papers.nips.cc/paper_files/paper/2016/hash/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Abstract.html
- “Ladder Variational Autoencoders” arXiv:1602.02282 [cs, stat] arXiv, 2016 DOI: 10.48550/arXiv.1602.02282
- Jonathan Ho, Ajay Jain and Pieter Abbeel “Denoising Diffusion Probabilistic Models” arXiv:2006.11239 [cs, stat] arXiv, 2020 DOI: 10.48550/arXiv.2006.11239
- “Variational Diffusion Models” arXiv:2107.00630 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2107.00630
- “Hierarchical Text-Conditional Image Generation with CLIP Latents” arXiv:2204.06125 [cs] arXiv, 2022 DOI: 10.48550/arXiv.2204.06125
- Arash Vahdat, Karsten Kreis and Jan Kautz “Score-based Generative Modeling in Latent Space” arXiv:2106.05931 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2106.05931
- “Diffusion Priors In Variational Autoencoders” arXiv:2106.15671 [cs] arXiv, 2021 DOI: 10.48550/arXiv.2106.15671
- “Object-Centric Learning with Slot Attention” arXiv:2006.15055 [cs, stat] arXiv, 2020 URL: http://arxiv.org/abs/2006.15055
- “Conditional Generative Modelling of Reconstructed Particles at Collider Experiments” arXiv:2211.06406 [hep-ex] arXiv, 2022 URL: http://arxiv.org/abs/2211.06406
- “The ATLAS Experiment at the CERN Large Hadron Collider - IOPscience” URL: https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003
- “Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks” arXiv:2109.07388 [hep-ex, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2109.07388
- “Calorimetry with deep learning: particle simulation and reconstruction for collider physics” In The European Physical Journal C 80.7, 2020, pp. 688 DOI: 10.1140/epjc/s10052-020-8251-9
- “Pixel Detector Background Generation using Generative Adversarial Networks at Belle II” Publisher: EDP Sciences In EPJ Web of Conferences 251, 2021, pp. 03031 DOI: 10.1051/epjconf/202125103031
- “The Phase-2 Upgrade of the CMS Endcap Calorimeter” Place: Geneva CERN, 2017 DOI: 10.17181/CERN.IV8M.1JY2
- “Results from the EPICAL-2 ultra-high granularity electromagnetic calorimeter prototype - ScienceDirect” URL: https://www.sciencedirect.com/science/article/pii/S0168900222008312
- “Fast Calorimeter Simulation Challenge 2022” In Fast Calorimeter Simulation Challenge 2022, 2022 URL: https://calochallenge.github.io/homepage/
- Benjamin Nachman, Luke Oliveira and Michela Paganini “Electromagnetic Calorimeter Shower Images” Publisher: Mendeley Data, 2017 DOI: 10.17632/pvn3xc3wy5.1
- Michela Paganini, Luke Oliveira and Benjamin Nachman “CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks” arXiv:1712.10321 [hep-ex, physics:hep-ph, stat] In Physical Review D 97.1, 2018, pp. 014021 DOI: 10.1103/PhysRevD.97.014021
- “Photon Showers in a High Granularity Calorimeter with Varying Incident Energy and Angle” DOI: 10.5281/zenodo.7786846
- “New Angles on Fast Calorimeter Shower Simulation” arXiv:2303.18150 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2303.18150
- “JetNet: A Python package for accessing open datasets and benchmarking machine learning methods in high energy physics” In Journal of Open Source Software 8.90, 2023, pp. 5789 DOI: 10.21105/joss.05789
- Huilin Qu, Congqiao Li and Sitian Qian “Particle Transformer for Jet Tagging” arXiv:2202.03772 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 URL: http://arxiv.org/abs/2202.03772
- Huilin Qu, Congqiao Li and Sitian Qian “JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics” Zenodo, 2022 DOI: 10.5281/zenodo.6619768
- Hosein Hashemi “Ultra-High Granularity Pixel Vertex Detector (PXD) signature Images” DOI: 10.5281/zenodo.8331919
- Anton Charkin-Gorbulin “Configurable calorimeter simulation for AI applications” _eprint: 2303.02101 In Mach. Learn. Sci. Tech. 4.3, 2023, pp. 035042 DOI: 10.1088/2632-2153/acf186
- Paul Gessinger-Befurt, Andreas Salzburger and Joana Niermann “The Open Data Detector Tracking System” Publisher: IOP Publishing In Journal of Physics: Conference Series 2438.1, 2023, pp. 012110 DOI: 10.1088/1742-6596/2438/1/012110
- “acts / OpenDataDetector · GitLab” URL: https://gitlab.cern.ch/acts/OpenDataDetector
- “Generation of Belle II Pixel Detector Background Data with a GAN” In EPJ Web of Conferences 245, 2020, pp. 02010 DOI: 10.1051/epjconf/202024502010
- “CaloScore v2: Single-shot Calorimeter Shower Simulation with Diffusion Models” arXiv:2308.03847 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2308.03847
- “Inductive CaloFlow” arXiv:2305.11934 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2305.11934
- “Denoising diffusion models with geometry adaptation for high fidelity calorimeter simulation” arXiv:2308.03876 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2308.03876
- “Score-based Generative Models for Calorimeter Shower Simulation” arXiv:2206.11898 [hep-ex, physics:hep-ph, physics:physics] In Physical Review D 106.9, 2022, pp. 092009 DOI: 10.1103/PhysRevD.106.092009
- “Hadrons, Better, Faster, Stronger” arXiv:2112.09709 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2112.09709
- “Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed” arXiv:2005.05334 [hep-ex, physics:hep-ph, physics:physics] In Computing and Software for Big Science 5.1, 2021, pp. 13 DOI: 10.1007/s41781-021-00056-0
- “Generative Adversarial Networks for Scintillation Signal Simulation in EXO-200” arXiv:2303.06311 [hep-ex, physics:physics] In Journal of Instrumentation 18.06, 2023, pp. P06005 DOI: 10.1088/1748-0221/18/06/P06005
- “CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation” arXiv:2305.04847 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2305.04847
- “CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation” arXiv:2309.05704 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2309.05704
- “Variational Autoencoders for Generative Modelling of Water Cherenkov Detectors” arXiv:1911.02369 [hep-ex, physics:physics, stat] arXiv, 2019 DOI: 10.48550/arXiv.1911.02369
- Ian Pang, John Andrew Raine and David Shih “SuperCalo: Calorimeter shower super-resolution” arXiv:2308.11700 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2308.11700
- Aishik Ghosh and on behalf of the ATLAS Collaboration “Deep generative models for fast shower simulation in ATLAS” Publisher: IOP Publishing In Journal of Physics: Conference Series 1525.1, 2020, pp. 012077 DOI: 10.1088/1742-6596/1525/1/012077
- Hyper-Kamiokande Proto-Collaboration “Hyper-Kamiokande Design Report” arXiv:1805.04163 [astro-ph, physics:hep-ex, physics:physics] arXiv, 2018 DOI: 10.48550/arXiv.1805.04163
- “End-to-end Sinkhorn Autoencoder with Noise Generator” arXiv:2006.06704 [cs, stat] arXiv, 2020 URL: http://arxiv.org/abs/2006.06704
- “Sinkhorn AutoEncoders” arXiv:1810.01118 [cs, stat] arXiv, 2019 URL: http://arxiv.org/abs/1810.01118
- Babajide O. Ayinde, Tamer Inanc and Jacek M. Zurada “Regularizing Deep Neural Networks by Enhancing Diversity in Feature Extraction” Conference Name: IEEE Transactions on Neural Networks and Learning Systems In IEEE Transactions on Neural Networks and Learning Systems 30.9, 2019, pp. 2650–2661 DOI: 10.1109/TNNLS.2018.2885972
- “DeepRICH: Learning Deeply Cherenkov Detectors” arXiv:1911.11717 [hep-ex, physics:nucl-ex, physics:physics] In Machine Learning: Science and Technology 1.1, 2020, pp. 015010 DOI: 10.1088/2632-2153/ab845a
- Kihyuk Sohn, Honglak Lee and Xinchen Yan “Learning Structured Output Representation using Deep Conditional Generative Models” In Advances in Neural Information Processing Systems 28 Curran Associates, Inc., 2015 URL: https://papers.nips.cc/paper_files/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html
- Shengjia Zhao, Jiaming Song and Stefano Ermon “InfoVAE: Information Maximizing Variational Autoencoders” arXiv:1706.02262 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1706.02262
- Jasper Snoek, Hugo Larochelle and Ryan P Adams “Practical Bayesian Optimization of Machine Learning Algorithms” In Advances in Neural Information Processing Systems 25 Curran Associates, Inc., 2012 URL: https://papers.nips.cc/paper_files/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
- “Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network” arXiv:2102.12491 [hep-ex, physics:hep-ph, physics:physics] In EPJ Web of Conferences 251, 2021, pp. 03003 DOI: 10.1051/epjconf/202125103003
- “Information bottleneck through variational glasses” arXiv:1912.00830 [cs] arXiv, 2019 URL: http://arxiv.org/abs/1912.00830
- “Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer” arXiv:1901.00875 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/1901.00875
- Emanuel Parzen “On Estimation of a Probability Density Function and Mode” Publisher: Institute of Mathematical Statistics In The Annals of Mathematical Statistics 33.3, 1962, pp. 1065–1076 URL: https://www.jstor.org/stable/2237880
- Ali Hariri, Darya Dyachkova and Sergei Gleyzer “Graph Generative Models for Fast Detector Simulations in High Energy Physics” arXiv:2104.01725 [hep-ex] arXiv, 2021 URL: http://arxiv.org/abs/2104.01725
- “Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC” arXiv:2109.15197 [hep-ex, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2109.15197
- “Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders” arXiv:2203.00520 [hep-ex, physics:hep-ph, physics:physics] In Machine Learning: Science and Technology 3.3, 2022, pp. 035003 DOI: 10.1088/2632-2153/ac7c56
- Haoqiang Fan, Hao Su and Leonidas Guibas “A Point Set Generation Network for 3D Object Reconstruction from a Single Image” arXiv:1612.00603 [cs] arXiv, 2016 URL: http://arxiv.org/abs/1612.00603
- “Particle Graph Autoencoders and Differentiable, Learned Energy Mover’s Distance” arXiv:2111.12849 [hep-ex, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2111.12849
- “Dynamic Graph CNN for Learning on Point Clouds” arXiv:1801.07829 [cs] arXiv, 2019 URL: http://arxiv.org/abs/1801.07829
- Jack H. Collins “An Exploration of Learnt Representations of W Jets” arXiv:2109.10919 [hep-ex, physics:hep-ph] arXiv, 2022 URL: http://arxiv.org/abs/2109.10919
- “Machine-Learning Compression for Particle Physics Discoveries” arXiv:2210.11489 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 URL: http://arxiv.org/abs/2210.11489
- Patrick T. Komiske, Eric M. Metodiev and Jesse Thaler “Energy Flow Networks: Deep Sets for Particle Jets” arXiv:1810.05165 [hep-ex, physics:hep-ph, stat] In Journal of High Energy Physics 2019.1, 2019, pp. 121 DOI: 10.1007/JHEP01(2019)121
- “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”, 2022 URL: https://openreview.net/forum?id=Sy2fzU9gl
- “CaloDVAE : Discrete Variational Autoencoders for Fast Calorimeter Shower Simulation” arXiv:2210.07430 [hep-ex, physics:physics, stat] arXiv, 2022 URL: http://arxiv.org/abs/2210.07430
- Jason Tyler Rolfe “Discrete Variational Autoencoders” arXiv:1609.02200 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1609.02200
- “DVAE++: Discrete Variational Autoencoders with Overlapping Transformations” arXiv:1802.04920 [cs, stat] arXiv, 2018 URL: http://arxiv.org/abs/1802.04920
- Amir H. Khoshaman and Mohammad H. Amin “GumBolt: Extending Gumbel trick to Boltzmann priors” arXiv:1805.07349 [cs, stat] arXiv, 2019 URL: http://arxiv.org/abs/1805.07349
- Guido Montufar “Restricted Boltzmann Machines: Introduction and Review” arXiv:1806.07066 [cs, math, stat] arXiv, 2018 URL: http://arxiv.org/abs/1806.07066
- “Fast and accurate simulation of particle detectors using generative adversarial networks” arXiv:1805.00850 [hep-ex, physics:hep-ph, physics:physics] In Computing and Software for Big Science 2.1, 2018, pp. 8 DOI: 10.1007/s41781-018-0015-y
- “Fast 2D Bicephalous Convolutional Autoencoder for Compressing 3D Time Projection Chamber Data” arXiv:2310.15026 [hep-ex, physics:nucl-ex, stat] arXiv, 2023 URL: http://arxiv.org/abs/2310.15026
- “BNL | sPHENIX Detector” URL: https://www.bnl.gov/rhic/sphenix.php
- “Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder” arXiv:2111.05423 [cs] arXiv, 2021 URL: http://arxiv.org/abs/2111.05423
- “CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds” arXiv:2211.15380 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 URL: http://arxiv.org/abs/2211.15380
- “Representation Learning: A Review and New Perspectives | IEEE Journals & Magazine | IEEE Xplore” URL: https://ieeexplore.ieee.org/abstract/document/6472238
- “Flows for simultaneous manifold learning and density estimation” arXiv:2003.13913 [cs, stat] arXiv, 2020 URL: http://arxiv.org/abs/2003.13913
- “Verifying the Union of Manifolds Hypothesis for Image Data” arXiv:2207.02862 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2207.02862
- Randall Balestriero, Jerome Pesenti and Yann LeCun “Learning in High Dimension Always Amounts to Extrapolation” arXiv:2110.09485 [cs] arXiv, 2021 DOI: 10.48550/arXiv.2110.09485
- “GENERAL THEORY OF NATURAL EQUIVALENCES”
- Pim Haan, Taco S Cohen and Max Welling “Natural Graph Networks” In Advances in Neural Information Processing Systems 33 Curran Associates, Inc., 2020, pp. 3636–3646 URL: https://proceedings.neurips.cc/paper/2020/hash/2517756c5a9be6ac007fe9bb7fb92611-Abstract.html
- “Graph Neural Networks are Dynamic Programmers” arXiv:2203.15544 [cs, math, stat] arXiv, 2022 DOI: 10.48550/arXiv.2203.15544
- Luke Oliveira, Michela Paganini and Benjamin Nachman “Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters” arXiv:1711.08813 [hep-ex, physics:physics] In Journal of Physics: Conference Series 1085, 2018, pp. 042017 DOI: 10.1088/1742-6596/1085/4/042017
- Michela Paganini, Luke Oliveira and Benjamin Nachman “Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multi-Layer Calorimeters” arXiv:1705.02355 [hep-ex, physics:hep-ph, stat] In Physical Review Letters 120.4, 2018, pp. 042003 DOI: 10.1103/PhysRevLett.120.042003
- Gul rukh Khattak, Sofia Vallecorsa and Federico Carminati “Three Dimensional Energy Parametrized Generative Adversarial Networks for Electromagnetic Shower Simulation” ISSN: 2381-8549 In 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 3913–3917 DOI: 10.1109/ICIP.2018.8451587
- Sofia Vallecorsa, Federico Carminati and Gulrukh Khattak “3D convolutional GAN for fast simulation” In EPJ Web of Conferences 214, 2019, pp. 02010 DOI: 10.1051/epjconf/201921402010
- Augustus Odena, Christopher Olah and Jonathon Shlens “Conditional Image Synthesis With Auxiliary Classifier GANs” arXiv:1610.09585 [cs, stat] arXiv, 2017 DOI: 10.48550/arXiv.1610.09585
- “Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks” arXiv:1802.03325 [astro-ph, physics:hep-ex] arXiv, 2018 URL: http://arxiv.org/abs/1802.03325
- Martin Arjovsky, Soumith Chintala and Léon Bottou “Wasserstein GAN” arXiv:1701.07875 [cs, stat] arXiv, 2017 DOI: 10.48550/arXiv.1701.07875
- Olaf Ronneberger, Philipp Fischer and Thomas Brox “U-Net: Convolutional Networks for Biomedical Image Segmentation” In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science Cham: Springer International Publishing, 2015, pp. 234–241 DOI: 10.1007/978-3-319-24574-4_28
- “Improved Training of Wasserstein GANs” arXiv:1704.00028 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1704.00028
- “Generative Models for Fast Calorimeter Simulation.LHCb case” arXiv:1812.01319 [physics] In EPJ Web of Conferences 214, 2019, pp. 02034 DOI: 10.1051/epjconf/201921402034
- Saúl Alonso-Monsalve and Leigh H. Whitehead “Image-based model parameter optimization using Model-Assisted Generative Adversarial Networks” arXiv:1812.00879 [hep-ex, stat] In IEEE Transactions on Neural Networks and Learning Systems 31.12, 2020, pp. 5645–5650 DOI: 10.1109/TNNLS.2020.2969327
- “Signature Verification using a "Siamese" Time Delay Neural Network” In Advances in Neural Information Processing Systems 6 Morgan-Kaufmann, 1993 URL: https://proceedings.neurips.cc/paper/1993/hash/288cc0ff022877bd3df94bc9360b9c5d-Abstract.html
- S. Chopra, R. Hadsell and Y. LeCun “Learning a similarity metric discriminatively, with application to face verification” ISSN: 1063-6919 In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 1, 2005, pp. 539–546 vol. 1 DOI: 10.1109/CVPR.2005.202
- Gregory Koch, Richard Zemel and Ruslan Salakhutdinov “Siamese Neural Networks for One-shot Image Recognition”
- “Attention Is All You Need” arXiv:1706.03762 [cs] arXiv, 2017 DOI: 10.48550/arXiv.1706.03762
- Mahmut Kaya and Hasan Sekir Bilge “Deep Metric Learning: A Survey” Number: 9 Publisher: Multidisciplinary Digital Publishing Institute In Symmetry 11.9, 2019, pp. 1066 DOI: 10.3390/sym11091066
- “DCTRGAN: Improving the Precision of Generative Models with Reweighting” arXiv:2009.03796 [hep-ex, physics:hep-ph, physics:physics, stat] In Journal of Instrumentation 15.11, 2020, pp. P11004–P11004 DOI: 10.1088/1748-0221/15/11/P11004
- “Neural Networks for Full Phase-space Reweighting and Parameter Tuning” arXiv:1907.08209 [hep-ex, physics:hep-ph, stat] In Physical Review D 101.9, 2020, pp. 091901 DOI: 10.1103/PhysRevD.101.091901
- “Efficiency Parameterization with Neural Networks” arXiv:2004.02665 [hep-ex, physics:hep-ph] arXiv, 2020 URL: http://arxiv.org/abs/2004.02665
- “Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics” arXiv:2012.00173 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2012.00173
- “Particle Cloud Generation with Message Passing Generative Adversarial Networks” arXiv:2106.11535 [hep-ex] arXiv, 2022 URL: http://arxiv.org/abs/2106.11535
- “Neural Message Passing for Quantum Chemistry” arXiv:1704.01212 [cs] arXiv, 2017 URL: http://arxiv.org/abs/1704.01212
- “Black-Box Optimization with Local Generative Surrogates” arXiv:2002.04632 [hep-ex, physics:physics, stat] arXiv, 2020 URL: http://arxiv.org/abs/2002.04632
- “Ensemble Models for Calorimeter Simulations” Publisher: IOP Publishing In Journal of Physics: Conference Series 2438.1, 2023, pp. 012080 DOI: 10.1088/1742-6596/2438/1/012080
- “AdaGAN: Boosting Generative Models” arXiv:1701.02386 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1701.02386
- Ramon Winterhalder, Marco Bellagente and Benjamin Nachman “Latent Space Refinement for Deep Generative Models” arXiv:2106.00792 [hep-ex, physics:hep-ph, physics:physics, stat] arXiv, 2021 URL: http://arxiv.org/abs/2106.00792
- Michele Faucci Giannelli and Rui Zhang “CaloShowerGAN, a Generative Adversarial Networks model for fast calorimeter shower simulation” arXiv:2309.06515 [hep-ex, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2309.06515
- “LHC analysis-specific datasets with Generative Adversarial Networks” arXiv:1901.05282 [hep-ex, physics:hep-ph] arXiv, 2019 URL: http://arxiv.org/abs/1901.05282
- “DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC” arXiv:1903.02433 [hep-ex, physics:hep-ph] In Journal of High Energy Physics 2019.8, 2019, pp. 110 DOI: 10.1007/JHEP08(2019)110
- Anja Butter, Tilman Plehn and Ramon Winterhalder “How to GAN LHC Events” arXiv:1907.03764 [hep-ph] In SciPost Physics 7.6, 2019, pp. 075 DOI: 10.21468/SciPostPhys.7.6.075
- “MMD GAN: Towards Deeper Understanding of Moment Matching Network” arXiv:1705.08584 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1705.08584
- Stefano Carrazza and Frédéric A. Dreyer “Lund jet images from generative and cycle-consistent adversarial networks” arXiv:1909.01359 [hep-ex, physics:hep-ph, stat] In The European Physical Journal C 79.11, 2019, pp. 979 DOI: 10.1140/epjc/s10052-019-7501-1
- “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” arXiv:1703.10593 [cs] arXiv, 2020 URL: http://arxiv.org/abs/1703.10593
- Frédéric A. Dreyer, Gavin P. Salam and Grégory Soyez “The Lund jet plane” In Journal of High Energy Physics 2018.12, 2018, pp. 64 DOI: 10.1007/JHEP12(2018)064
- “Next Generation Generative Neural Networks for HEP” Publisher: EDP Sciences In EPJ Web of Conferences 214, 2019, pp. 09005 DOI: 10.1051/epjconf/201921409005
- Jinmian Li, Cong Zhang and Rao Zhang “Polarization measurement for the dileptonic channel of $W^+ W^-$ scattering using generative adversarial network” arXiv:2109.09924 [hep-ex, physics:hep-ph] In Physical Review D 105.1, 2022, pp. 016005 DOI: 10.1103/PhysRevD.105.016005
- Tero Karras, Samuli Laine and Timo Aila “A Style-Based Generator Architecture for Generative Adversarial Networks” arXiv:1812.04948 [cs, stat] arXiv, 2019 URL: http://arxiv.org/abs/1812.04948
- “Conditional Generative Adversarial Nets” arXiv:1411.1784 [cs, stat] arXiv, 2014 DOI: 10.48550/arXiv.1411.1784
- “Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN)” arXiv:2001.11103 [hep-ex, physics:hep-ph, stat] In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021, pp. 2126–2132 DOI: 10.24963/ijcai.2021/293
- “cFAT-GAN: Conditional Simulation of Electron–Proton Scattering Events with Variate Beam Energies by a Feature Augmented and Transformed Generative Adversarial Network” In Deep Learning Applications, Volume 3, Advances in Intelligent Systems and Computing Singapore: Springer, 2022, pp. 245–261 DOI: 10.1007/978-981-16-3357-7_10
- “Style-based quantum generative adversarial networks for Monte Carlo events” arXiv:2110.06933 [hep-ph, physics:quant-ph] In Quantum 6, 2022, pp. 777 DOI: 10.22331/q-2022-08-17-777
- “Learning to Simulate High Energy Particle Collisions from Unlabeled Data” arXiv:2101.08944 [hep-ex, physics:hep-ph] In Scientific Reports 12.1, 2022, pp. 7567 DOI: 10.1038/s41598-022-10966-7
- “Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model” arXiv:1804.01947 [cs, stat] arXiv, 2018 URL: http://arxiv.org/abs/1804.01947
- Erik Buhmann, Gregor Kasieczka and Jesse Thaler “EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets” arXiv:2301.08128 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2301.08128
- “Attention to Mean-Fields for Particle Cloud Generation” arXiv:2305.15254 [hep-ex] arXiv, 2023 URL: http://arxiv.org/abs/2305.15254
- “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” arXiv:1810.04805 [cs] arXiv, 2019 DOI: 10.48550/arXiv.1810.04805
- “Generative models uncertainty estimation” arXiv:2210.09767 [hep-ex, physics:hep-ph] In Journal of Physics: Conference Series 2438.1, 2023, pp. 012088 DOI: 10.1088/1742-6596/2438/1/012088
- Andrey Malinin, Bruno Mlodozeniec and Mark Gales “Ensemble Distribution Distillation” arXiv:1905.00076 [cs, stat] arXiv, 2019 URL: http://arxiv.org/abs/1905.00076
- “CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows” arXiv:2106.05285 [hep-ex, physics:hep-ph, physics:physics] In Physical Review D 107.11, 2023, pp. 113003 DOI: 10.1103/PhysRevD.107.113003
- “MADE: Masked Autoencoder for Distribution Estimation” arXiv:1502.03509 [cs, stat] arXiv, 2015 URL: http://arxiv.org/abs/1502.03509
- “Neural Spline Flows” arXiv:1906.04032 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1906.04032
- “CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows” arXiv:2110.11377 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2110.11377
- “Improving Variational Inference with Inverse Autoregressive Flow” arXiv:1606.04934 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1606.04934
- Claudius Krause, Ian Pang and David Shih “CaloFlow for CaloChallenge Dataset 1” _eprint: 2210.14245, 2022
- “JetFlow: Generating Jets with Conditioned and Mass Constrained Normalising Flows” arXiv:2211.13630 [hep-ex] arXiv, 2022 URL: http://arxiv.org/abs/2211.13630
- Benno Käch, Dirk Krücker and Isabell Melzer-Pellmann “Point Cloud Generation using Transformer Encoders and Normalising Flows” arXiv:2211.13623 [hep-ex] arXiv, 2022 URL: http://arxiv.org/abs/2211.13623
- “Generative Machine Learning for Detector Response Modeling with a Conditional Normalizing Flow” arXiv:2303.10148 [hep-ex, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2303.10148
- George Papamakarios, Theo Pavlakou and Iain Murray “Masked Autoregressive Flow for Density Estimation” arXiv:1705.07057 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1705.07057
- Vinicius Mikuni, Benjamin Nachman and Mariel Pettee “Fast Point Cloud Generation with Diffusion Models in High Energy Physics” arXiv:2304.01266 [hep-ex, physics:hep-ph] arXiv, 2023 DOI: 10.48550/arXiv.2304.01266
- “Progressive Distillation for Fast Sampling of Diffusion Models”, 2022 URL: https://openreview.net/forum?id=TIdIXIpzhoI
- “PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics” arXiv:2303.05376 [hep-ex, physics:hep-ph] arXiv, 2023 URL: http://arxiv.org/abs/2303.05376
- “PC-Droid: Faster diffusion and improved quality for particle cloud generation” arXiv:2307.06836 [hep-ex, physics:hep-ph] arXiv, 2023 DOI: 10.48550/arXiv.2307.06836
- “Elucidating the Design Space of Diffusion-Based Generative Models” arXiv:2206.00364 [cs, stat] arXiv, 2022 DOI: 10.48550/arXiv.2206.00364
- “Consistency Models” arXiv:2303.01469 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2303.01469
- “Jet Diffusion versus JetGPT – Modern Networks for the LHC” arXiv:2305.10475 [hep-ph] arXiv, 2023 DOI: 10.48550/arXiv.2305.10475
- “Improving language understanding with unsupervised learning” URL: https://openai.com/research/language-unsupervised
- Zeviel Imani, Shuchin Aeron and Taritree Wongjirad “Score-based Diffusion Models for Generating Liquid Argon Time Projection Chamber Images” arXiv:2307.13687 [hep-ex] arXiv, 2023 URL: http://arxiv.org/abs/2307.13687
- “Score-Based Generative Modeling through Stochastic Differential Equations” arXiv:2011.13456 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2011.13456
- Sascha Diefenbacher, Vinicius Mikuni and Benjamin Nachman “Refining Fast Calorimeter Simulations with a Schr\"{o}dinger Bridge” arXiv:2308.12339 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2308.12339
- “Diffusion Schr\"odinger Bridge Matching” arXiv:2303.16852 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2303.16852
- “Diffusion Schr\"odinger Bridge with Applications to Score-Based Generative Modeling” arXiv:2106.01357 [cs, math, stat] arXiv, 2023 DOI: 10.48550/arXiv.2106.01357
- “Über die Umkehrung der Naturgesetze. Von E. Schrödinger. (Sonderausgabe a. d. Sitz.-Ber. d. Preuß. Akad. d. Wiss., Phys.-math. Klasse, 1931, IX.) Verlag W. de Gruyter, Berlin. Preis RM. 1,—” _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ange.19310443014 In Angewandte Chemie 44.30, 1931, pp. 636–636 DOI: 10.1002/ange.19310443014
- “Improved Denoising Diffusion Probabilistic Models” arXiv:2102.09672 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2102.09672
- “Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation” arXiv:2011.10033 [cs] arXiv, 2020 DOI: 10.48550/arXiv.2011.10033
- “Conditional Image Generation with PixelCNN Decoders” arXiv:1606.05328 [cs] arXiv, 2016 DOI: 10.48550/arXiv.1606.05328
- “PixelSNAIL: An Improved Autoregressive Generative Model” ISSN: 2640-3498 In Proceedings of the 35th International Conference on Machine Learning PMLR, 2018, pp. 864–872 URL: https://proceedings.mlr.press/v80/chen18h.html
- “GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models”
- “SARM: Sparse Autoregressive Model for Scalable Generation of Sparse Images in Particle Physics” arXiv:2009.14017 [hep-ex, physics:physics] In Physical Review D 103.3, 2021, pp. 036012 DOI: 10.1103/PhysRevD.103.036012
- “Geometry-aware Autoregressive Models for Calorimeter Shower Simulations” arXiv:2212.08233 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 URL: http://arxiv.org/abs/2212.08233
- “Generalizing to new calorimeter geometries with Geometry-Aware Autoregressive Models (GAAMs) for fast calorimeter simulation” arXiv:2305.11531 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2305.11531
- “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation” arXiv:1406.1078 [cs, stat] arXiv, 2014 DOI: 10.48550/arXiv.1406.1078
- “Learning the language of QCD jets with transformers” arXiv:2303.07364 [hep-ph] arXiv, 2023 URL: http://arxiv.org/abs/2303.07364
- “TraDE: Transformers for Density Estimation” arXiv:2004.02441 [cs, stat] arXiv, 2020 URL: http://arxiv.org/abs/2004.02441
- “L2LFlows: Generating High-Fidelity 3D Calorimeter Images” arXiv:2302.11594 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2302.11594
- “Bias and Generalization in Deep Generative Models: An Empirical Study” arXiv:1811.03259 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1811.03259
- “Relational inductive biases, deep learning, and graph networks” arXiv:1806.01261 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1806.01261
- Dominik Zietlow, Michal Rolinek and Georg Martius “Demystifying Inductive Biases for (Beta-)VAE Based Architectures” ISSN: 2640-3498 In Proceedings of the 38th International Conference on Machine Learning PMLR, 2021, pp. 12945–12954 URL: https://proceedings.mlr.press/v139/zietlow21a.html
- “Detecting Symmetries with Neural Networks” arXiv:2003.13679 [hep-th, physics:physics] arXiv, 2020 DOI: 10.48550/arXiv.2003.13679
- “Symmetries, Safety, and Self-Supervision” arXiv:2108.04253 [hep-ph] arXiv, 2021 DOI: 10.48550/arXiv.2108.04253
- Gabriela Barenboim, Johannes Hirn and Veronica Sanz “Symmetry meets AI” In SciPost Physics 11.1, 2021, pp. 014 DOI: 10.21468/SciPostPhys.11.1.014
- Rupert Tombs and Christopher G. Lester “A method to challenge symmetries in data with self-supervised learning” arXiv:2111.05442 [hep-ph, physics:physics] In Journal of Instrumentation 17.08, 2022, pp. P08024 DOI: 10.1088/1748-0221/17/08/P08024
- Krish Desai, Benjamin Nachman and Jesse Thaler “SymmetryGAN: Symmetry Discovery with Deep Learning” arXiv:2112.05722 [hep-ph, physics:physics] In Physical Review D 105.9, 2022, pp. 096031 DOI: 10.1103/PhysRevD.105.096031
- Jeff Z. HaoChen and Tengyu Ma “A Theoretical Study of Inductive Biases in Contrastive Learning” arXiv:2211.14699 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2211.14699
- “Sample Amplification: Increasing Dataset Size even when Learning is Impossible” arXiv:1904.12053 [cs, math, stat] arXiv, 2019 DOI: 10.48550/arXiv.1904.12053
- Stefano Carrazza, Juan M. Cruz-Martinez and Tanjona R. Rabemananjara “Compressing PDF sets using generative adversarial networks” arXiv:2104.04535 [hep-ex, physics:hep-ph] In The European Physical Journal C 81.6, 2021, pp. 530 DOI: 10.1140/epjc/s10052-021-09338-8
- Ibrahim Chahrour and James D. Wells “Comparing Machine Learning and Interpolation Methods for Loop-Level Calculations” arXiv:2111.14788 [hep-ph] In SciPost Physics 12.6, 2022, pp. 187 DOI: 10.21468/SciPostPhys.12.6.187
- “Data Amplification: A Unified and Competitive Approach to Property Estimation” arXiv:1904.00070 [cs, math, stat] arXiv, 2019 DOI: 10.48550/arXiv.1904.00070
- “On the Statistical Complexity of Sample Amplification” arXiv:2201.04315 [cs, math, stat] arXiv, 2022 DOI: 10.48550/arXiv.2201.04315
- Anja Butter “Amplifying Statistics using Generative Models”
- “To Compress or Not to Compress- Self-Supervised Learning and Information Theory: A Review” arXiv:2304.09355 [cs, math] arXiv, 2023 DOI: 10.48550/arXiv.2304.09355
- “A Cookbook of Self-Supervised Learning” arXiv:2304.12210 [cs] arXiv, 2023 DOI: 10.48550/arXiv.2304.12210
- “Evaluating generative models in high energy physics” arXiv:2211.10295 [hep-ex, stat] In Physical Review D 107.7, 2023, pp. 076017 DOI: 10.1103/PhysRevD.107.076017
- “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks” ISSN: 2640-3498 In Proceedings of the 36th International Conference on Machine Learning PMLR, 2019, pp. 3744–3753 URL: https://proceedings.mlr.press/v97/lee19d.html
- “Baler – Machine Learning Based Compression of Scientific Data” arXiv:2305.02283 [hep-ex, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2305.02283
- Wei Mu, Alexander I. Himmel and Bryan Ramson “Photon detection probability prediction using one-dimensional generative neural network” arXiv:2109.07277 [hep-ex, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2109.07277
- Alberto Regadío, Luis Esteban and Sebastián Sánchez-Prieto “Synthesis of pulses from particle detectors with a Generative Adversarial Network (GAN)” In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1033, 2022, pp. 166647 DOI: 10.1016/j.nima.2022.166647
- Jonas Köhler, Leon Klein and Frank Noé “Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities” arXiv:2006.02425 [physics, stat] arXiv, 2020 DOI: 10.48550/arXiv.2006.02425
- “De novo protein design by deep network hallucination” Number: 7889 Publisher: Nature Publishing Group In Nature 600.7889, 2021, pp. 547–552 DOI: 10.1038/s41586-021-04184-w
- Chase R Freschlin, Sarah A Fahlberg and Philip A Romero “Machine learning to navigate fitness landscapes for protein engineering” In Current Opinion in Biotechnology 75, 2022, pp. 102713 DOI: 10.1016/j.copbio.2022.102713
- “De novo design of luciferases using deep learning” Number: 7949 Publisher: Nature Publishing Group In Nature 614.7949, 2023, pp. 774–780 DOI: 10.1038/s41586-023-05696-3
- “De novo design of protein interactions with learned surface fingerprints” Number: 7959 Publisher: Nature Publishing Group In Nature 617.7959, 2023, pp. 176–184 DOI: 10.1038/s41586-023-05993-x
- “Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials” Number: 1 Publisher: Nature Publishing Group In npj Computational Materials 7.1, 2021, pp. 1–8 DOI: 10.1038/s41524-021-00572-y
- “Skilful precipitation nowcasting using deep generative models of radar” Number: 7878 Publisher: Nature Publishing Group In Nature 597.7878, 2021, pp. 672–677 DOI: 10.1038/s41586-021-03854-z
- “Large language models generate functional protein sequences across diverse families” Number: 8 Publisher: Nature Publishing Group In Nature Biotechnology 41.8, 2023, pp. 1099–1106 DOI: 10.1038/s41587-022-01618-2
- “Zero-Knowledge Zero-Shot Learning for Novel Visual Category Discovery” arXiv:2302.04427 [cs] arXiv, 2023 DOI: 10.48550/arXiv.2302.04427
- “Learning to simulate high energy particle collisions from unlabeled data | Scientific Reports” URL: https://www.nature.com/articles/s41598-022-10966-7
- “Generative networks for precision enthusiasts” In SciPost Physics 14.4, 2023, pp. 078 DOI: 10.21468/SciPostPhys.14.4.078
- “How to Understand Limitations of Generative Networks” arXiv:2305.16774 [hep-ph] arXiv, 2023 URL: http://arxiv.org/abs/2305.16774
- “Precision-Machine Learning for the Matrix Element Method” arXiv:2310.07752 [hep-ph] arXiv, 2023 URL: http://arxiv.org/abs/2310.07752
- “Morse Neural Networks for Uncertainty Quantification” arXiv:2307.00667 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2307.00667
- Hashan Ratnayake, Lin Chen and Xiaofeng Ding “A review of federated learning: taxonomy, privacy and future directions” In Journal of Intelligent Information Systems, 2023 DOI: 10.1007/s10844-023-00797-x
- “Meta-neural networks that learn by learning” In [Proceedings 1992] IJCNN International Joint Conference on Neural Networks 1, 1992, pp. 437–442 vol.1 DOI: 10.1109/IJCNN.1992.287172
- Dalila Salamani, Anna Zaborowska and Witold Pokorski “MetaHEP: Meta learning for fast shower simulation of high energy physics experiments” In Physics Letters B 844, 2023, pp. 138079 DOI: 10.1016/j.physletb.2023.138079
- “Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper” arXiv:2203.13818 [physics] arXiv, 2022 DOI: 10.48550/arXiv.2203.13818
- “Progress in End-to-End Optimization of Detectors for Fundamental Physics with Differentiable Programming” arXiv:2310.05673 [physics] arXiv, 2023 DOI: 10.48550/arXiv.2310.05673
- “Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics” arXiv:2308.16680 [hep-ex, physics:hep-ph, physics:physics, stat] arXiv, 2023 DOI: 10.48550/arXiv.2308.16680
- “Automatic differentiation in machine learning: a survey” arXiv:1502.05767 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1502.05767
- “Quantum Computing for High-Energy Physics: State of the Art and Challenges. Summary of the QC4HEP Working Group” arXiv:2307.03236 [hep-ex, physics:hep-lat, physics:hep-th, physics:quant-ph] arXiv, 2023 URL: http://arxiv.org/abs/2307.03236
- “A Full Quantum Generative Adversarial Network Model for High Energy Physics Simulations” arXiv:2305.07284 [hep-ex, physics:quant-ph] arXiv, 2023 URL: http://arxiv.org/abs/2305.07284
- “Generative Invertible Quantum Neural Networks” arXiv:2302.12906 [hep-ph, physics:quant-ph] arXiv, 2023 DOI: 10.48550/arXiv.2302.12906
- “CaloQVAE : Simulating high-energy particle-calorimeter interactions using hybrid quantum-classical generative models” arXiv:2312.03179 [hep-ex, physics:quant-ph] arXiv, 2023 DOI: 10.48550/arXiv.2312.03179
- “Detector Simulation Challenges for Future Accelerator Experiments” In Frontiers in Physics 10, 2022 URL: https://www.frontiersin.org/articles/10.3389/fphy.2022.913510
- HEP ML Community\ “A Living Review of Machine Learning for Particle Physics” URL: https://iml-wg.github.io/HEPML-LivingReview/