Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Generative Models for Detector Signature Simulation: A Taxonomic Review (2312.09597v2)

Published 15 Dec 2023 in physics.ins-det, cs.LG, hep-ex, hep-ph, and physics.data-an

Abstract: In modern collider experiments, the quest to explore fundamental interactions between elementary particles has reached unparalleled levels of precision. Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions (the final state particles of hard scattering interactions). The complete simulation of them in a detector is a computational and storage-intensive task. To address this computational bottleneck in particle physics, alternative approaches have been developed, introducing additional assumptions and trade off accuracy for speed.The field has seen a surge in interest in surrogate modeling the detector simulation, fueled by the advancements in deep generative models. These models aim to generate responses that are statistically identical to the observed data. In this paper, we conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures from both methodological and application-wise perspectives. Initially, we formulate the problem of detector signature simulation and discuss its different variations that can be unified. Next, we classify the state-of-the-art methods into five distinct categories based on their underlying model architectures, summarizing their respective generation strategies. Finally, we shed light on the challenges and opportunities that lie ahead in detector signature simulation, setting the stage for future research and development.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (262)
  1. Geoffrey E. Hinton and J. Sejnowski “OPTIMAL PERCEPTUAL INFERENCE”, 1983 URL: https://www.semanticscholar.org/paper/OPTIMAL-PERCEPTUAL-INFERENCE-Hinton-Sejnowski/1718965f492d4e9fe1d98a3fb83efe671a4aed2c
  2. Geoffrey E. Hinton “Training products of experts by minimizing contrastive divergence” In Neural Computation 14.8, 2002, pp. 1771–1800 DOI: 10.1162/089976602760128018
  3. Geoffrey E. Hinton, Simon Osindero and Yee-Whye Teh “A fast learning algorithm for deep belief nets” In Neural Computation 18.7, 2006, pp. 1527–1554 DOI: 10.1162/neco.2006.18.7.1527
  4. Jakub M. Tomczak “Deep Generative Modeling” Cham: Springer International Publishing, 2022 DOI: 10.1007/978-3-030-93158-2
  5. Luke Oliveira, Michela Paganini and Benjamin Nachman “Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis” arXiv:1701.05927 [hep-ex, physics:physics, stat] In Computing and Software for Big Science 1.1, 2017, pp. 4 DOI: 10.1007/s41781-017-0004-6
  6. “New directions for surrogate models and differentiable programming for High Energy Physics detector simulation” arXiv:2203.08806 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 DOI: 10.48550/arXiv.2203.08806
  7. “Machine Learning and LHC Event Generation” arXiv:2203.07460 [hep-ex, physics:hep-ph] In SciPost Physics 14.4, 2023, pp. 079 DOI: 10.21468/SciPostPhys.14.4.079
  8. “Geant4—a simulation toolkit” In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3, 2003, pp. 250–303 DOI: 10.1016/S0168-9002(03)01368-8
  9. “Geant4 developments and applications” Conference Name: IEEE Transactions on Nuclear Science In IEEE Transactions on Nuclear Science 53.1, 2006, pp. 270–278 DOI: 10.1109/TNS.2006.869826
  10. “Recent developments in Geant4 - ScienceDirect” URL: https://www.sciencedirect.com/science/article/pii/S0168900216306957
  11. “GANplifying Event Samples” arXiv:2008.06545 [hep-ex, physics:hep-ph, physics:physics, stat] In SciPost Physics 10.6, 2021, pp. 139 DOI: 10.21468/SciPostPhys.10.6.139
  12. “Calomplification – The Power of Generative Calorimeter Models” arXiv:2202.07352 [hep-ex, physics:hep-ph] In Journal of Instrumentation 17.09, 2022, pp. P09028 DOI: 10.1088/1748-0221/17/09/P09028
  13. Konstantin T. Matchev, Alexander Roman and Prasanth Shyamsundar “Uncertainties associated with GAN-generated datasets in high energy physics” arXiv:2002.06307 [hep-ex, physics:hep-ph, physics:physics] In SciPost Physics 12.3, 2022, pp. 104 DOI: 10.21468/SciPostPhys.12.3.104
  14. Hosein Hashemi “Out-of-Distribution Multi-set Generation with Context Extrapolation for Amortized Simulation and Inverse Problems” Soon to Appear
  15. Kunihiko Fukushima “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position” In Biological Cybernetics 36.4, 1980, pp. 193–202 DOI: 10.1007/BF00344251
  16. Petar Veličković “Everything is Connected: Graph Neural Networks” arXiv:2301.08210 [cs, stat] In Current Opinion in Structural Biology 79, 2023, pp. 102538 DOI: 10.1016/j.sbi.2023.102538
  17. “Deep Sets” arXiv:1703.06114 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1703.06114
  18. “Controlled Selection–A Technique in Probability Sampling” Publisher: [American Statistical Association, Taylor & Francis, Ltd.] In Journal of the American Statistical Association 45.251, 1950, pp. 350–372 DOI: 10.2307/2280293
  19. Diederik P. Kingma and Max Welling “Auto-Encoding Variational Bayes” arXiv:1312.6114 [cs, stat] arXiv, 2022 DOI: 10.48550/arXiv.1312.6114
  20. Danilo Jimenez Rezende, Shakir Mohamed and Daan Wierstra “Stochastic Backpropagation and Approximate Inference in Deep Generative Models” arXiv:1401.4082 [cs, stat] arXiv, 2014 DOI: 10.48550/arXiv.1401.4082
  21. Yuri Burda, Roger Grosse and Ruslan Salakhutdinov “Importance Weighted Autoencoders” arXiv:1509.00519 [cs, stat] arXiv, 2016 DOI: 10.48550/arXiv.1509.00519
  22. Radford M. Neal “Annealed importance sampling” In Statistics and Computing 11.2, 2001, pp. 125–139 DOI: 10.1023/A:1008923215028
  23. “Differentiable Annealed Importance Sampling and the Perils of Gradient Noise”, 2021 URL: https://openreview.net/forum?id=6rqjgrL7Lq
  24. “Nested Variational Inference” In Advances in Neural Information Processing Systems 34 Curran Associates, Inc., 2021, pp. 20423–20435 URL: https://proceedings.neurips.cc/paper/2021/hash/ab49b208848abe14418090d95df0d590-Abstract.html
  25. “Generating Sentences from a Continuous Space” arXiv:1511.06349 [cs] arXiv, 2016 DOI: 10.48550/arXiv.1511.06349
  26. Danilo Jimenez Rezende and Fabio Viola “Taming VAEs” arXiv:1810.00597 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1810.00597
  27. “Integer Discrete Flows and Lossless Compression” arXiv:1905.07376 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1905.07376
  28. “IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression” arXiv:2006.12459 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2006.12459
  29. George Papamakarios, David C. Sterratt and Iain Murray “Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows” arXiv:1805.07226 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1805.07226
  30. Lucas Theis, Aäron van den Oord and Matthias Bethge “A note on the evaluation of generative models” arXiv:1511.01844 [cs, stat] arXiv, 2016 DOI: 10.48550/arXiv.1511.01844
  31. Danilo Jimenez Rezende and Shakir Mohamed “Variational Inference with Normalizing Flows” arXiv:1505.05770 [cs, stat] arXiv, 2016 DOI: 10.48550/arXiv.1505.05770
  32. “Sylvester Normalizing Flows for Variational Inference” arXiv:1803.05649 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1803.05649
  33. A.-M. Magnan “HGCAL: a High-Granularity Calorimeter for the endcaps of CMS at HL-LHC” In Journal of Instrumentation 12.01, 2017, pp. C01042 DOI: 10.1088/1748-0221/12/01/C01042
  34. “Chapter 1: High-Luminosity Large Hadron Collider” In CERN Yellow Reports: Monographs 10, 2020, pp. 1–1 DOI: 10.23731/CYRM-2020-0010.1
  35. “Status of the BELLE II Pixel Detector” Conference Name: 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging In Proceedings of 10th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging — PoS(Pixel2022) 420 SISSA Medialab, 2023, pp. 005 DOI: 10.22323/1.420.0005
  36. “Belle II Technical Design Report” arXiv:1011.0352 [hep-ex, physics:physics] arXiv, 2010 DOI: 10.48550/arXiv.1011.0352
  37. Jürgen Schmidhuber “Making the world differentiable: on using self supervised fully recurrent neural networks for dynamic reinforcement learning and planning in non-stationary environments” Google-Books-ID: 9c2sHAAACAAJ Inst. für Informatik, 1990
  38. “Generative Adversarial Networks” arXiv:1406.2661 [cs, stat] arXiv, 2014 DOI: 10.48550/arXiv.1406.2661
  39. “Statistics and Neural Networks: Advances at the Interface - Google Books” URL: https://books.google.de/books/about/Statistics_and_Neural_Networks.html?id=9p8myYozxBUC&redir_esc=y
  40. “GATSBI: Generative Adversarial Training for Simulation-Based Inference” arXiv:2203.06481 [cs, stat] arXiv, 2022 DOI: 10.48550/arXiv.2203.06481
  41. Kaustuv Datta, Deepak Kar and Debarati Roy “Unfolding with Generative Adversarial Networks” arXiv:1806.00433 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2018 DOI: 10.48550/arXiv.1806.00433
  42. “How to GAN away Detector Effects” arXiv:1912.00477 [hep-ph] In SciPost Physics 8.4, 2020, pp. 070 DOI: 10.21468/SciPostPhys.8.4.070
  43. Axel Sauer, Katja Schwarz and Andreas Geiger “StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets” arXiv:2202.00273 [cs] arXiv, 2022 DOI: 10.48550/arXiv.2202.00273
  44. “FFHQ 1024 x 1024 Benchmark (Image Generation) | Papers With Code” URL: https://paperswithcode.com/sota/image-generation-on-ffhq-1024-x-1024
  45. “Ultra-High-Resolution Detector Simulation with Intra-Event Aware GAN and Self-Supervised Relational Reasoning” arXiv:2303.08046 [hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2303.08046
  46. Yoshua Bengio, Réjean Ducharme and Pascal Vincent “A Neural Probabilistic Language Model” In Advances in Neural Information Processing Systems 13 MIT Press, 2000 URL: https://papers.nips.cc/paper_files/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
  47. “Generative Modeling by Estimating Gradients of the Data Distribution” arXiv:1907.05600 [cs, stat] arXiv, 2020 DOI: 10.48550/arXiv.1907.05600
  48. Yang Song and Diederik P. Kingma “How to Train Your Energy-Based Models” arXiv:2101.03288 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2101.03288
  49. “Deep Unsupervised Learning using Nonequilibrium Thermodynamics” ISSN: 1938-7228 In Proceedings of the 32nd International Conference on Machine Learning PMLR, 2015, pp. 2256–2265 URL: https://proceedings.mlr.press/v37/sohl-dickstein15.html
  50. “Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit” arXiv:1905.09883 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1905.09883
  51. “Improved Variational Inference with Inverse Autoregressive Flow” In Advances in Neural Information Processing Systems 29 Curran Associates, Inc., 2016 URL: https://papers.nips.cc/paper_files/paper/2016/hash/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Abstract.html
  52. “Ladder Variational Autoencoders” arXiv:1602.02282 [cs, stat] arXiv, 2016 DOI: 10.48550/arXiv.1602.02282
  53. Jonathan Ho, Ajay Jain and Pieter Abbeel “Denoising Diffusion Probabilistic Models” arXiv:2006.11239 [cs, stat] arXiv, 2020 DOI: 10.48550/arXiv.2006.11239
  54. “Variational Diffusion Models” arXiv:2107.00630 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2107.00630
  55. “Hierarchical Text-Conditional Image Generation with CLIP Latents” arXiv:2204.06125 [cs] arXiv, 2022 DOI: 10.48550/arXiv.2204.06125
  56. Arash Vahdat, Karsten Kreis and Jan Kautz “Score-based Generative Modeling in Latent Space” arXiv:2106.05931 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2106.05931
  57. “Diffusion Priors In Variational Autoencoders” arXiv:2106.15671 [cs] arXiv, 2021 DOI: 10.48550/arXiv.2106.15671
  58. “Object-Centric Learning with Slot Attention” arXiv:2006.15055 [cs, stat] arXiv, 2020 URL: http://arxiv.org/abs/2006.15055
  59. “Conditional Generative Modelling of Reconstructed Particles at Collider Experiments” arXiv:2211.06406 [hep-ex] arXiv, 2022 URL: http://arxiv.org/abs/2211.06406
  60. “The ATLAS Experiment at the CERN Large Hadron Collider - IOPscience” URL: https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003
  61. “Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks” arXiv:2109.07388 [hep-ex, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2109.07388
  62. “Calorimetry with deep learning: particle simulation and reconstruction for collider physics” In The European Physical Journal C 80.7, 2020, pp. 688 DOI: 10.1140/epjc/s10052-020-8251-9
  63. “Pixel Detector Background Generation using Generative Adversarial Networks at Belle II” Publisher: EDP Sciences In EPJ Web of Conferences 251, 2021, pp. 03031 DOI: 10.1051/epjconf/202125103031
  64. “The Phase-2 Upgrade of the CMS Endcap Calorimeter” Place: Geneva CERN, 2017 DOI: 10.17181/CERN.IV8M.1JY2
  65. “Results from the EPICAL-2 ultra-high granularity electromagnetic calorimeter prototype - ScienceDirect” URL: https://www.sciencedirect.com/science/article/pii/S0168900222008312
  66. “Fast Calorimeter Simulation Challenge 2022” In Fast Calorimeter Simulation Challenge 2022, 2022 URL: https://calochallenge.github.io/homepage/
  67. Benjamin Nachman, Luke Oliveira and Michela Paganini “Electromagnetic Calorimeter Shower Images” Publisher: Mendeley Data, 2017 DOI: 10.17632/pvn3xc3wy5.1
  68. Michela Paganini, Luke Oliveira and Benjamin Nachman “CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks” arXiv:1712.10321 [hep-ex, physics:hep-ph, stat] In Physical Review D 97.1, 2018, pp. 014021 DOI: 10.1103/PhysRevD.97.014021
  69. “Photon Showers in a High Granularity Calorimeter with Varying Incident Energy and Angle” DOI: 10.5281/zenodo.7786846
  70. “New Angles on Fast Calorimeter Shower Simulation” arXiv:2303.18150 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2303.18150
  71. “JetNet: A Python package for accessing open datasets and benchmarking machine learning methods in high energy physics” In Journal of Open Source Software 8.90, 2023, pp. 5789 DOI: 10.21105/joss.05789
  72. Huilin Qu, Congqiao Li and Sitian Qian “Particle Transformer for Jet Tagging” arXiv:2202.03772 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 URL: http://arxiv.org/abs/2202.03772
  73. Huilin Qu, Congqiao Li and Sitian Qian “JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics” Zenodo, 2022 DOI: 10.5281/zenodo.6619768
  74. Hosein Hashemi “Ultra-High Granularity Pixel Vertex Detector (PXD) signature Images” DOI: 10.5281/zenodo.8331919
  75. Anton Charkin-Gorbulin “Configurable calorimeter simulation for AI applications” _eprint: 2303.02101 In Mach. Learn. Sci. Tech. 4.3, 2023, pp. 035042 DOI: 10.1088/2632-2153/acf186
  76. Paul Gessinger-Befurt, Andreas Salzburger and Joana Niermann “The Open Data Detector Tracking System” Publisher: IOP Publishing In Journal of Physics: Conference Series 2438.1, 2023, pp. 012110 DOI: 10.1088/1742-6596/2438/1/012110
  77. “acts / OpenDataDetector · GitLab” URL: https://gitlab.cern.ch/acts/OpenDataDetector
  78. “Generation of Belle II Pixel Detector Background Data with a GAN” In EPJ Web of Conferences 245, 2020, pp. 02010 DOI: 10.1051/epjconf/202024502010
  79. “CaloScore v2: Single-shot Calorimeter Shower Simulation with Diffusion Models” arXiv:2308.03847 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2308.03847
  80. “Inductive CaloFlow” arXiv:2305.11934 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2305.11934
  81. “Denoising diffusion models with geometry adaptation for high fidelity calorimeter simulation” arXiv:2308.03876 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2308.03876
  82. “Score-based Generative Models for Calorimeter Shower Simulation” arXiv:2206.11898 [hep-ex, physics:hep-ph, physics:physics] In Physical Review D 106.9, 2022, pp. 092009 DOI: 10.1103/PhysRevD.106.092009
  83. “Hadrons, Better, Faster, Stronger” arXiv:2112.09709 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2112.09709
  84. “Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed” arXiv:2005.05334 [hep-ex, physics:hep-ph, physics:physics] In Computing and Software for Big Science 5.1, 2021, pp. 13 DOI: 10.1007/s41781-021-00056-0
  85. “Generative Adversarial Networks for Scintillation Signal Simulation in EXO-200” arXiv:2303.06311 [hep-ex, physics:physics] In Journal of Instrumentation 18.06, 2023, pp. P06005 DOI: 10.1088/1748-0221/18/06/P06005
  86. “CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation” arXiv:2305.04847 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2305.04847
  87. “CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation” arXiv:2309.05704 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2309.05704
  88. “Variational Autoencoders for Generative Modelling of Water Cherenkov Detectors” arXiv:1911.02369 [hep-ex, physics:physics, stat] arXiv, 2019 DOI: 10.48550/arXiv.1911.02369
  89. Ian Pang, John Andrew Raine and David Shih “SuperCalo: Calorimeter shower super-resolution” arXiv:2308.11700 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2308.11700
  90. Aishik Ghosh and on behalf of the ATLAS Collaboration “Deep generative models for fast shower simulation in ATLAS” Publisher: IOP Publishing In Journal of Physics: Conference Series 1525.1, 2020, pp. 012077 DOI: 10.1088/1742-6596/1525/1/012077
  91. Hyper-Kamiokande Proto-Collaboration “Hyper-Kamiokande Design Report” arXiv:1805.04163 [astro-ph, physics:hep-ex, physics:physics] arXiv, 2018 DOI: 10.48550/arXiv.1805.04163
  92. “End-to-end Sinkhorn Autoencoder with Noise Generator” arXiv:2006.06704 [cs, stat] arXiv, 2020 URL: http://arxiv.org/abs/2006.06704
  93. “Sinkhorn AutoEncoders” arXiv:1810.01118 [cs, stat] arXiv, 2019 URL: http://arxiv.org/abs/1810.01118
  94. Babajide O. Ayinde, Tamer Inanc and Jacek M. Zurada “Regularizing Deep Neural Networks by Enhancing Diversity in Feature Extraction” Conference Name: IEEE Transactions on Neural Networks and Learning Systems In IEEE Transactions on Neural Networks and Learning Systems 30.9, 2019, pp. 2650–2661 DOI: 10.1109/TNNLS.2018.2885972
  95. “DeepRICH: Learning Deeply Cherenkov Detectors” arXiv:1911.11717 [hep-ex, physics:nucl-ex, physics:physics] In Machine Learning: Science and Technology 1.1, 2020, pp. 015010 DOI: 10.1088/2632-2153/ab845a
  96. Kihyuk Sohn, Honglak Lee and Xinchen Yan “Learning Structured Output Representation using Deep Conditional Generative Models” In Advances in Neural Information Processing Systems 28 Curran Associates, Inc., 2015 URL: https://papers.nips.cc/paper_files/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html
  97. Shengjia Zhao, Jiaming Song and Stefano Ermon “InfoVAE: Information Maximizing Variational Autoencoders” arXiv:1706.02262 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1706.02262
  98. Jasper Snoek, Hugo Larochelle and Ryan P Adams “Practical Bayesian Optimization of Machine Learning Algorithms” In Advances in Neural Information Processing Systems 25 Curran Associates, Inc., 2012 URL: https://papers.nips.cc/paper_files/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
  99. “Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network” arXiv:2102.12491 [hep-ex, physics:hep-ph, physics:physics] In EPJ Web of Conferences 251, 2021, pp. 03003 DOI: 10.1051/epjconf/202125103003
  100. “Information bottleneck through variational glasses” arXiv:1912.00830 [cs] arXiv, 2019 URL: http://arxiv.org/abs/1912.00830
  101. “Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer” arXiv:1901.00875 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/1901.00875
  102. Emanuel Parzen “On Estimation of a Probability Density Function and Mode” Publisher: Institute of Mathematical Statistics In The Annals of Mathematical Statistics 33.3, 1962, pp. 1065–1076 URL: https://www.jstor.org/stable/2237880
  103. Ali Hariri, Darya Dyachkova and Sergei Gleyzer “Graph Generative Models for Fast Detector Simulations in High Energy Physics” arXiv:2104.01725 [hep-ex] arXiv, 2021 URL: http://arxiv.org/abs/2104.01725
  104. “Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC” arXiv:2109.15197 [hep-ex, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2109.15197
  105. “Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders” arXiv:2203.00520 [hep-ex, physics:hep-ph, physics:physics] In Machine Learning: Science and Technology 3.3, 2022, pp. 035003 DOI: 10.1088/2632-2153/ac7c56
  106. Haoqiang Fan, Hao Su and Leonidas Guibas “A Point Set Generation Network for 3D Object Reconstruction from a Single Image” arXiv:1612.00603 [cs] arXiv, 2016 URL: http://arxiv.org/abs/1612.00603
  107. “Particle Graph Autoencoders and Differentiable, Learned Energy Mover’s Distance” arXiv:2111.12849 [hep-ex, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2111.12849
  108. “Dynamic Graph CNN for Learning on Point Clouds” arXiv:1801.07829 [cs] arXiv, 2019 URL: http://arxiv.org/abs/1801.07829
  109. Jack H. Collins “An Exploration of Learnt Representations of W Jets” arXiv:2109.10919 [hep-ex, physics:hep-ph] arXiv, 2022 URL: http://arxiv.org/abs/2109.10919
  110. “Machine-Learning Compression for Particle Physics Discoveries” arXiv:2210.11489 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 URL: http://arxiv.org/abs/2210.11489
  111. Patrick T. Komiske, Eric M. Metodiev and Jesse Thaler “Energy Flow Networks: Deep Sets for Particle Jets” arXiv:1810.05165 [hep-ex, physics:hep-ph, stat] In Journal of High Energy Physics 2019.1, 2019, pp. 121 DOI: 10.1007/JHEP01(2019)121
  112. “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”, 2022 URL: https://openreview.net/forum?id=Sy2fzU9gl
  113. “CaloDVAE : Discrete Variational Autoencoders for Fast Calorimeter Shower Simulation” arXiv:2210.07430 [hep-ex, physics:physics, stat] arXiv, 2022 URL: http://arxiv.org/abs/2210.07430
  114. Jason Tyler Rolfe “Discrete Variational Autoencoders” arXiv:1609.02200 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1609.02200
  115. “DVAE++: Discrete Variational Autoencoders with Overlapping Transformations” arXiv:1802.04920 [cs, stat] arXiv, 2018 URL: http://arxiv.org/abs/1802.04920
  116. Amir H. Khoshaman and Mohammad H. Amin “GumBolt: Extending Gumbel trick to Boltzmann priors” arXiv:1805.07349 [cs, stat] arXiv, 2019 URL: http://arxiv.org/abs/1805.07349
  117. Guido Montufar “Restricted Boltzmann Machines: Introduction and Review” arXiv:1806.07066 [cs, math, stat] arXiv, 2018 URL: http://arxiv.org/abs/1806.07066
  118. “Fast and accurate simulation of particle detectors using generative adversarial networks” arXiv:1805.00850 [hep-ex, physics:hep-ph, physics:physics] In Computing and Software for Big Science 2.1, 2018, pp. 8 DOI: 10.1007/s41781-018-0015-y
  119. “Fast 2D Bicephalous Convolutional Autoencoder for Compressing 3D Time Projection Chamber Data” arXiv:2310.15026 [hep-ex, physics:nucl-ex, stat] arXiv, 2023 URL: http://arxiv.org/abs/2310.15026
  120. “BNL | sPHENIX Detector” URL: https://www.bnl.gov/rhic/sphenix.php
  121. “Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder” arXiv:2111.05423 [cs] arXiv, 2021 URL: http://arxiv.org/abs/2111.05423
  122. “CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds” arXiv:2211.15380 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 URL: http://arxiv.org/abs/2211.15380
  123. “Representation Learning: A Review and New Perspectives | IEEE Journals & Magazine | IEEE Xplore” URL: https://ieeexplore.ieee.org/abstract/document/6472238
  124. “Flows for simultaneous manifold learning and density estimation” arXiv:2003.13913 [cs, stat] arXiv, 2020 URL: http://arxiv.org/abs/2003.13913
  125. “Verifying the Union of Manifolds Hypothesis for Image Data” arXiv:2207.02862 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2207.02862
  126. Randall Balestriero, Jerome Pesenti and Yann LeCun “Learning in High Dimension Always Amounts to Extrapolation” arXiv:2110.09485 [cs] arXiv, 2021 DOI: 10.48550/arXiv.2110.09485
  127. “GENERAL THEORY OF NATURAL EQUIVALENCES”
  128. Pim Haan, Taco S Cohen and Max Welling “Natural Graph Networks” In Advances in Neural Information Processing Systems 33 Curran Associates, Inc., 2020, pp. 3636–3646 URL: https://proceedings.neurips.cc/paper/2020/hash/2517756c5a9be6ac007fe9bb7fb92611-Abstract.html
  129. “Graph Neural Networks are Dynamic Programmers” arXiv:2203.15544 [cs, math, stat] arXiv, 2022 DOI: 10.48550/arXiv.2203.15544
  130. Luke Oliveira, Michela Paganini and Benjamin Nachman “Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters” arXiv:1711.08813 [hep-ex, physics:physics] In Journal of Physics: Conference Series 1085, 2018, pp. 042017 DOI: 10.1088/1742-6596/1085/4/042017
  131. Michela Paganini, Luke Oliveira and Benjamin Nachman “Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multi-Layer Calorimeters” arXiv:1705.02355 [hep-ex, physics:hep-ph, stat] In Physical Review Letters 120.4, 2018, pp. 042003 DOI: 10.1103/PhysRevLett.120.042003
  132. Gul rukh Khattak, Sofia Vallecorsa and Federico Carminati “Three Dimensional Energy Parametrized Generative Adversarial Networks for Electromagnetic Shower Simulation” ISSN: 2381-8549 In 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 3913–3917 DOI: 10.1109/ICIP.2018.8451587
  133. Sofia Vallecorsa, Federico Carminati and Gulrukh Khattak “3D convolutional GAN for fast simulation” In EPJ Web of Conferences 214, 2019, pp. 02010 DOI: 10.1051/epjconf/201921402010
  134. Augustus Odena, Christopher Olah and Jonathon Shlens “Conditional Image Synthesis With Auxiliary Classifier GANs” arXiv:1610.09585 [cs, stat] arXiv, 2017 DOI: 10.48550/arXiv.1610.09585
  135. “Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks” arXiv:1802.03325 [astro-ph, physics:hep-ex] arXiv, 2018 URL: http://arxiv.org/abs/1802.03325
  136. Martin Arjovsky, Soumith Chintala and Léon Bottou “Wasserstein GAN” arXiv:1701.07875 [cs, stat] arXiv, 2017 DOI: 10.48550/arXiv.1701.07875
  137. Olaf Ronneberger, Philipp Fischer and Thomas Brox “U-Net: Convolutional Networks for Biomedical Image Segmentation” In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science Cham: Springer International Publishing, 2015, pp. 234–241 DOI: 10.1007/978-3-319-24574-4_28
  138. “Improved Training of Wasserstein GANs” arXiv:1704.00028 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1704.00028
  139. “Generative Models for Fast Calorimeter Simulation.LHCb case” arXiv:1812.01319 [physics] In EPJ Web of Conferences 214, 2019, pp. 02034 DOI: 10.1051/epjconf/201921402034
  140. Saúl Alonso-Monsalve and Leigh H. Whitehead “Image-based model parameter optimization using Model-Assisted Generative Adversarial Networks” arXiv:1812.00879 [hep-ex, stat] In IEEE Transactions on Neural Networks and Learning Systems 31.12, 2020, pp. 5645–5650 DOI: 10.1109/TNNLS.2020.2969327
  141. “Signature Verification using a "Siamese" Time Delay Neural Network” In Advances in Neural Information Processing Systems 6 Morgan-Kaufmann, 1993 URL: https://proceedings.neurips.cc/paper/1993/hash/288cc0ff022877bd3df94bc9360b9c5d-Abstract.html
  142. S. Chopra, R. Hadsell and Y. LeCun “Learning a similarity metric discriminatively, with application to face verification” ISSN: 1063-6919 In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 1, 2005, pp. 539–546 vol. 1 DOI: 10.1109/CVPR.2005.202
  143. Gregory Koch, Richard Zemel and Ruslan Salakhutdinov “Siamese Neural Networks for One-shot Image Recognition”
  144. “Attention Is All You Need” arXiv:1706.03762 [cs] arXiv, 2017 DOI: 10.48550/arXiv.1706.03762
  145. Mahmut Kaya and Hasan Sekir Bilge “Deep Metric Learning: A Survey” Number: 9 Publisher: Multidisciplinary Digital Publishing Institute In Symmetry 11.9, 2019, pp. 1066 DOI: 10.3390/sym11091066
  146. “DCTRGAN: Improving the Precision of Generative Models with Reweighting” arXiv:2009.03796 [hep-ex, physics:hep-ph, physics:physics, stat] In Journal of Instrumentation 15.11, 2020, pp. P11004–P11004 DOI: 10.1088/1748-0221/15/11/P11004
  147. “Neural Networks for Full Phase-space Reweighting and Parameter Tuning” arXiv:1907.08209 [hep-ex, physics:hep-ph, stat] In Physical Review D 101.9, 2020, pp. 091901 DOI: 10.1103/PhysRevD.101.091901
  148. “Efficiency Parameterization with Neural Networks” arXiv:2004.02665 [hep-ex, physics:hep-ph] arXiv, 2020 URL: http://arxiv.org/abs/2004.02665
  149. “Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics” arXiv:2012.00173 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2012.00173
  150. “Particle Cloud Generation with Message Passing Generative Adversarial Networks” arXiv:2106.11535 [hep-ex] arXiv, 2022 URL: http://arxiv.org/abs/2106.11535
  151. “Neural Message Passing for Quantum Chemistry” arXiv:1704.01212 [cs] arXiv, 2017 URL: http://arxiv.org/abs/1704.01212
  152. “Black-Box Optimization with Local Generative Surrogates” arXiv:2002.04632 [hep-ex, physics:physics, stat] arXiv, 2020 URL: http://arxiv.org/abs/2002.04632
  153. “Ensemble Models for Calorimeter Simulations” Publisher: IOP Publishing In Journal of Physics: Conference Series 2438.1, 2023, pp. 012080 DOI: 10.1088/1742-6596/2438/1/012080
  154. “AdaGAN: Boosting Generative Models” arXiv:1701.02386 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1701.02386
  155. Ramon Winterhalder, Marco Bellagente and Benjamin Nachman “Latent Space Refinement for Deep Generative Models” arXiv:2106.00792 [hep-ex, physics:hep-ph, physics:physics, stat] arXiv, 2021 URL: http://arxiv.org/abs/2106.00792
  156. Michele Faucci Giannelli and Rui Zhang “CaloShowerGAN, a Generative Adversarial Networks model for fast calorimeter shower simulation” arXiv:2309.06515 [hep-ex, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2309.06515
  157. “LHC analysis-specific datasets with Generative Adversarial Networks” arXiv:1901.05282 [hep-ex, physics:hep-ph] arXiv, 2019 URL: http://arxiv.org/abs/1901.05282
  158. “DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC” arXiv:1903.02433 [hep-ex, physics:hep-ph] In Journal of High Energy Physics 2019.8, 2019, pp. 110 DOI: 10.1007/JHEP08(2019)110
  159. Anja Butter, Tilman Plehn and Ramon Winterhalder “How to GAN LHC Events” arXiv:1907.03764 [hep-ph] In SciPost Physics 7.6, 2019, pp. 075 DOI: 10.21468/SciPostPhys.7.6.075
  160. “MMD GAN: Towards Deeper Understanding of Moment Matching Network” arXiv:1705.08584 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1705.08584
  161. Stefano Carrazza and Frédéric A. Dreyer “Lund jet images from generative and cycle-consistent adversarial networks” arXiv:1909.01359 [hep-ex, physics:hep-ph, stat] In The European Physical Journal C 79.11, 2019, pp. 979 DOI: 10.1140/epjc/s10052-019-7501-1
  162. “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” arXiv:1703.10593 [cs] arXiv, 2020 URL: http://arxiv.org/abs/1703.10593
  163. Frédéric A. Dreyer, Gavin P. Salam and Grégory Soyez “The Lund jet plane” In Journal of High Energy Physics 2018.12, 2018, pp. 64 DOI: 10.1007/JHEP12(2018)064
  164. “Next Generation Generative Neural Networks for HEP” Publisher: EDP Sciences In EPJ Web of Conferences 214, 2019, pp. 09005 DOI: 10.1051/epjconf/201921409005
  165. Jinmian Li, Cong Zhang and Rao Zhang “Polarization measurement for the dileptonic channel of $W^+ W^-$ scattering using generative adversarial network” arXiv:2109.09924 [hep-ex, physics:hep-ph] In Physical Review D 105.1, 2022, pp. 016005 DOI: 10.1103/PhysRevD.105.016005
  166. Tero Karras, Samuli Laine and Timo Aila “A Style-Based Generator Architecture for Generative Adversarial Networks” arXiv:1812.04948 [cs, stat] arXiv, 2019 URL: http://arxiv.org/abs/1812.04948
  167. “Conditional Generative Adversarial Nets” arXiv:1411.1784 [cs, stat] arXiv, 2014 DOI: 10.48550/arXiv.1411.1784
  168. “Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN)” arXiv:2001.11103 [hep-ex, physics:hep-ph, stat] In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021, pp. 2126–2132 DOI: 10.24963/ijcai.2021/293
  169. “cFAT-GAN: Conditional Simulation of Electron–Proton Scattering Events with Variate Beam Energies by a Feature Augmented and Transformed Generative Adversarial Network” In Deep Learning Applications, Volume 3, Advances in Intelligent Systems and Computing Singapore: Springer, 2022, pp. 245–261 DOI: 10.1007/978-981-16-3357-7_10
  170. “Style-based quantum generative adversarial networks for Monte Carlo events” arXiv:2110.06933 [hep-ph, physics:quant-ph] In Quantum 6, 2022, pp. 777 DOI: 10.22331/q-2022-08-17-777
  171. “Learning to Simulate High Energy Particle Collisions from Unlabeled Data” arXiv:2101.08944 [hep-ex, physics:hep-ph] In Scientific Reports 12.1, 2022, pp. 7567 DOI: 10.1038/s41598-022-10966-7
  172. “Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model” arXiv:1804.01947 [cs, stat] arXiv, 2018 URL: http://arxiv.org/abs/1804.01947
  173. Erik Buhmann, Gregor Kasieczka and Jesse Thaler “EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets” arXiv:2301.08128 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2301.08128
  174. “Attention to Mean-Fields for Particle Cloud Generation” arXiv:2305.15254 [hep-ex] arXiv, 2023 URL: http://arxiv.org/abs/2305.15254
  175. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” arXiv:1810.04805 [cs] arXiv, 2019 DOI: 10.48550/arXiv.1810.04805
  176. “Generative models uncertainty estimation” arXiv:2210.09767 [hep-ex, physics:hep-ph] In Journal of Physics: Conference Series 2438.1, 2023, pp. 012088 DOI: 10.1088/1742-6596/2438/1/012088
  177. Andrey Malinin, Bruno Mlodozeniec and Mark Gales “Ensemble Distribution Distillation” arXiv:1905.00076 [cs, stat] arXiv, 2019 URL: http://arxiv.org/abs/1905.00076
  178. “CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows” arXiv:2106.05285 [hep-ex, physics:hep-ph, physics:physics] In Physical Review D 107.11, 2023, pp. 113003 DOI: 10.1103/PhysRevD.107.113003
  179. “MADE: Masked Autoencoder for Distribution Estimation” arXiv:1502.03509 [cs, stat] arXiv, 2015 URL: http://arxiv.org/abs/1502.03509
  180. “Neural Spline Flows” arXiv:1906.04032 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1906.04032
  181. “CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows” arXiv:2110.11377 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2110.11377
  182. “Improving Variational Inference with Inverse Autoregressive Flow” arXiv:1606.04934 [cs, stat] arXiv, 2017 URL: http://arxiv.org/abs/1606.04934
  183. Claudius Krause, Ian Pang and David Shih “CaloFlow for CaloChallenge Dataset 1” _eprint: 2210.14245, 2022
  184. “JetFlow: Generating Jets with Conditioned and Mass Constrained Normalising Flows” arXiv:2211.13630 [hep-ex] arXiv, 2022 URL: http://arxiv.org/abs/2211.13630
  185. Benno Käch, Dirk Krücker and Isabell Melzer-Pellmann “Point Cloud Generation using Transformer Encoders and Normalising Flows” arXiv:2211.13623 [hep-ex] arXiv, 2022 URL: http://arxiv.org/abs/2211.13623
  186. “Generative Machine Learning for Detector Response Modeling with a Conditional Normalizing Flow” arXiv:2303.10148 [hep-ex, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2303.10148
  187. George Papamakarios, Theo Pavlakou and Iain Murray “Masked Autoregressive Flow for Density Estimation” arXiv:1705.07057 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1705.07057
  188. Vinicius Mikuni, Benjamin Nachman and Mariel Pettee “Fast Point Cloud Generation with Diffusion Models in High Energy Physics” arXiv:2304.01266 [hep-ex, physics:hep-ph] arXiv, 2023 DOI: 10.48550/arXiv.2304.01266
  189. “Progressive Distillation for Fast Sampling of Diffusion Models”, 2022 URL: https://openreview.net/forum?id=TIdIXIpzhoI
  190. “PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics” arXiv:2303.05376 [hep-ex, physics:hep-ph] arXiv, 2023 URL: http://arxiv.org/abs/2303.05376
  191. “PC-Droid: Faster diffusion and improved quality for particle cloud generation” arXiv:2307.06836 [hep-ex, physics:hep-ph] arXiv, 2023 DOI: 10.48550/arXiv.2307.06836
  192. “Elucidating the Design Space of Diffusion-Based Generative Models” arXiv:2206.00364 [cs, stat] arXiv, 2022 DOI: 10.48550/arXiv.2206.00364
  193. “Consistency Models” arXiv:2303.01469 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2303.01469
  194. “Jet Diffusion versus JetGPT – Modern Networks for the LHC” arXiv:2305.10475 [hep-ph] arXiv, 2023 DOI: 10.48550/arXiv.2305.10475
  195. “Improving language understanding with unsupervised learning” URL: https://openai.com/research/language-unsupervised
  196. Zeviel Imani, Shuchin Aeron and Taritree Wongjirad “Score-based Diffusion Models for Generating Liquid Argon Time Projection Chamber Images” arXiv:2307.13687 [hep-ex] arXiv, 2023 URL: http://arxiv.org/abs/2307.13687
  197. “Score-Based Generative Modeling through Stochastic Differential Equations” arXiv:2011.13456 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2011.13456
  198. Sascha Diefenbacher, Vinicius Mikuni and Benjamin Nachman “Refining Fast Calorimeter Simulations with a Schr\"{o}dinger Bridge” arXiv:2308.12339 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2308.12339
  199. “Diffusion Schr\"odinger Bridge Matching” arXiv:2303.16852 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2303.16852
  200. “Diffusion Schr\"odinger Bridge with Applications to Score-Based Generative Modeling” arXiv:2106.01357 [cs, math, stat] arXiv, 2023 DOI: 10.48550/arXiv.2106.01357
  201. “Über die Umkehrung der Naturgesetze. Von E. Schrödinger. (Sonderausgabe a. d. Sitz.-Ber. d. Preuß. Akad. d. Wiss., Phys.-math. Klasse, 1931, IX.) Verlag W. de Gruyter, Berlin. Preis RM. 1,—” _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ange.19310443014 In Angewandte Chemie 44.30, 1931, pp. 636–636 DOI: 10.1002/ange.19310443014
  202. “Improved Denoising Diffusion Probabilistic Models” arXiv:2102.09672 [cs, stat] arXiv, 2021 DOI: 10.48550/arXiv.2102.09672
  203. “Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation” arXiv:2011.10033 [cs] arXiv, 2020 DOI: 10.48550/arXiv.2011.10033
  204. “Conditional Image Generation with PixelCNN Decoders” arXiv:1606.05328 [cs] arXiv, 2016 DOI: 10.48550/arXiv.1606.05328
  205. “PixelSNAIL: An Improved Autoregressive Generative Model” ISSN: 2640-3498 In Proceedings of the 35th International Conference on Machine Learning PMLR, 2018, pp. 864–872 URL: https://proceedings.mlr.press/v80/chen18h.html
  206. “GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models”
  207. “SARM: Sparse Autoregressive Model for Scalable Generation of Sparse Images in Particle Physics” arXiv:2009.14017 [hep-ex, physics:physics] In Physical Review D 103.3, 2021, pp. 036012 DOI: 10.1103/PhysRevD.103.036012
  208. “Geometry-aware Autoregressive Models for Calorimeter Shower Simulations” arXiv:2212.08233 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2022 URL: http://arxiv.org/abs/2212.08233
  209. “Generalizing to new calorimeter geometries with Geometry-Aware Autoregressive Models (GAAMs) for fast calorimeter simulation” arXiv:2305.11531 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2305.11531
  210. “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation” arXiv:1406.1078 [cs, stat] arXiv, 2014 DOI: 10.48550/arXiv.1406.1078
  211. “Learning the language of QCD jets with transformers” arXiv:2303.07364 [hep-ph] arXiv, 2023 URL: http://arxiv.org/abs/2303.07364
  212. “TraDE: Transformers for Density Estimation” arXiv:2004.02441 [cs, stat] arXiv, 2020 URL: http://arxiv.org/abs/2004.02441
  213. “L2LFlows: Generating High-Fidelity 3D Calorimeter Images” arXiv:2302.11594 [hep-ex, physics:hep-ph, physics:physics] arXiv, 2023 DOI: 10.48550/arXiv.2302.11594
  214. “Bias and Generalization in Deep Generative Models: An Empirical Study” arXiv:1811.03259 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1811.03259
  215. “Relational inductive biases, deep learning, and graph networks” arXiv:1806.01261 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1806.01261
  216. Dominik Zietlow, Michal Rolinek and Georg Martius “Demystifying Inductive Biases for (Beta-)VAE Based Architectures” ISSN: 2640-3498 In Proceedings of the 38th International Conference on Machine Learning PMLR, 2021, pp. 12945–12954 URL: https://proceedings.mlr.press/v139/zietlow21a.html
  217. “Detecting Symmetries with Neural Networks” arXiv:2003.13679 [hep-th, physics:physics] arXiv, 2020 DOI: 10.48550/arXiv.2003.13679
  218. “Symmetries, Safety, and Self-Supervision” arXiv:2108.04253 [hep-ph] arXiv, 2021 DOI: 10.48550/arXiv.2108.04253
  219. Gabriela Barenboim, Johannes Hirn and Veronica Sanz “Symmetry meets AI” In SciPost Physics 11.1, 2021, pp. 014 DOI: 10.21468/SciPostPhys.11.1.014
  220. Rupert Tombs and Christopher G. Lester “A method to challenge symmetries in data with self-supervised learning” arXiv:2111.05442 [hep-ph, physics:physics] In Journal of Instrumentation 17.08, 2022, pp. P08024 DOI: 10.1088/1748-0221/17/08/P08024
  221. Krish Desai, Benjamin Nachman and Jesse Thaler “SymmetryGAN: Symmetry Discovery with Deep Learning” arXiv:2112.05722 [hep-ph, physics:physics] In Physical Review D 105.9, 2022, pp. 096031 DOI: 10.1103/PhysRevD.105.096031
  222. Jeff Z. HaoChen and Tengyu Ma “A Theoretical Study of Inductive Biases in Contrastive Learning” arXiv:2211.14699 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2211.14699
  223. “Sample Amplification: Increasing Dataset Size even when Learning is Impossible” arXiv:1904.12053 [cs, math, stat] arXiv, 2019 DOI: 10.48550/arXiv.1904.12053
  224. Stefano Carrazza, Juan M. Cruz-Martinez and Tanjona R. Rabemananjara “Compressing PDF sets using generative adversarial networks” arXiv:2104.04535 [hep-ex, physics:hep-ph] In The European Physical Journal C 81.6, 2021, pp. 530 DOI: 10.1140/epjc/s10052-021-09338-8
  225. Ibrahim Chahrour and James D. Wells “Comparing Machine Learning and Interpolation Methods for Loop-Level Calculations” arXiv:2111.14788 [hep-ph] In SciPost Physics 12.6, 2022, pp. 187 DOI: 10.21468/SciPostPhys.12.6.187
  226. “Data Amplification: A Unified and Competitive Approach to Property Estimation” arXiv:1904.00070 [cs, math, stat] arXiv, 2019 DOI: 10.48550/arXiv.1904.00070
  227. “On the Statistical Complexity of Sample Amplification” arXiv:2201.04315 [cs, math, stat] arXiv, 2022 DOI: 10.48550/arXiv.2201.04315
  228. Anja Butter “Amplifying Statistics using Generative Models”
  229. “To Compress or Not to Compress- Self-Supervised Learning and Information Theory: A Review” arXiv:2304.09355 [cs, math] arXiv, 2023 DOI: 10.48550/arXiv.2304.09355
  230. “A Cookbook of Self-Supervised Learning” arXiv:2304.12210 [cs] arXiv, 2023 DOI: 10.48550/arXiv.2304.12210
  231. “Evaluating generative models in high energy physics” arXiv:2211.10295 [hep-ex, stat] In Physical Review D 107.7, 2023, pp. 076017 DOI: 10.1103/PhysRevD.107.076017
  232. “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks” ISSN: 2640-3498 In Proceedings of the 36th International Conference on Machine Learning PMLR, 2019, pp. 3744–3753 URL: https://proceedings.mlr.press/v97/lee19d.html
  233. “Baler – Machine Learning Based Compression of Scientific Data” arXiv:2305.02283 [hep-ex, physics:physics] arXiv, 2023 URL: http://arxiv.org/abs/2305.02283
  234. Wei Mu, Alexander I. Himmel and Bryan Ramson “Photon detection probability prediction using one-dimensional generative neural network” arXiv:2109.07277 [hep-ex, physics:physics] arXiv, 2021 URL: http://arxiv.org/abs/2109.07277
  235. Alberto Regadío, Luis Esteban and Sebastián Sánchez-Prieto “Synthesis of pulses from particle detectors with a Generative Adversarial Network (GAN)” In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1033, 2022, pp. 166647 DOI: 10.1016/j.nima.2022.166647
  236. Jonas Köhler, Leon Klein and Frank Noé “Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities” arXiv:2006.02425 [physics, stat] arXiv, 2020 DOI: 10.48550/arXiv.2006.02425
  237. “De novo protein design by deep network hallucination” Number: 7889 Publisher: Nature Publishing Group In Nature 600.7889, 2021, pp. 547–552 DOI: 10.1038/s41586-021-04184-w
  238. Chase R Freschlin, Sarah A Fahlberg and Philip A Romero “Machine learning to navigate fitness landscapes for protein engineering” In Current Opinion in Biotechnology 75, 2022, pp. 102713 DOI: 10.1016/j.copbio.2022.102713
  239. “De novo design of luciferases using deep learning” Number: 7949 Publisher: Nature Publishing Group In Nature 614.7949, 2023, pp. 774–780 DOI: 10.1038/s41586-023-05696-3
  240. “De novo design of protein interactions with learned surface fingerprints” Number: 7959 Publisher: Nature Publishing Group In Nature 617.7959, 2023, pp. 176–184 DOI: 10.1038/s41586-023-05993-x
  241. “Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials” Number: 1 Publisher: Nature Publishing Group In npj Computational Materials 7.1, 2021, pp. 1–8 DOI: 10.1038/s41524-021-00572-y
  242. “Skilful precipitation nowcasting using deep generative models of radar” Number: 7878 Publisher: Nature Publishing Group In Nature 597.7878, 2021, pp. 672–677 DOI: 10.1038/s41586-021-03854-z
  243. “Large language models generate functional protein sequences across diverse families” Number: 8 Publisher: Nature Publishing Group In Nature Biotechnology 41.8, 2023, pp. 1099–1106 DOI: 10.1038/s41587-022-01618-2
  244. “Zero-Knowledge Zero-Shot Learning for Novel Visual Category Discovery” arXiv:2302.04427 [cs] arXiv, 2023 DOI: 10.48550/arXiv.2302.04427
  245. “Learning to simulate high energy particle collisions from unlabeled data | Scientific Reports” URL: https://www.nature.com/articles/s41598-022-10966-7
  246. “Generative networks for precision enthusiasts” In SciPost Physics 14.4, 2023, pp. 078 DOI: 10.21468/SciPostPhys.14.4.078
  247. “How to Understand Limitations of Generative Networks” arXiv:2305.16774 [hep-ph] arXiv, 2023 URL: http://arxiv.org/abs/2305.16774
  248. “Precision-Machine Learning for the Matrix Element Method” arXiv:2310.07752 [hep-ph] arXiv, 2023 URL: http://arxiv.org/abs/2310.07752
  249. “Morse Neural Networks for Uncertainty Quantification” arXiv:2307.00667 [cs, stat] arXiv, 2023 DOI: 10.48550/arXiv.2307.00667
  250. Hashan Ratnayake, Lin Chen and Xiaofeng Ding “A review of federated learning: taxonomy, privacy and future directions” In Journal of Intelligent Information Systems, 2023 DOI: 10.1007/s10844-023-00797-x
  251. “Meta-neural networks that learn by learning” In [Proceedings 1992] IJCNN International Joint Conference on Neural Networks 1, 1992, pp. 437–442 vol.1 DOI: 10.1109/IJCNN.1992.287172
  252. Dalila Salamani, Anna Zaborowska and Witold Pokorski “MetaHEP: Meta learning for fast shower simulation of high energy physics experiments” In Physics Letters B 844, 2023, pp. 138079 DOI: 10.1016/j.physletb.2023.138079
  253. “Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper” arXiv:2203.13818 [physics] arXiv, 2022 DOI: 10.48550/arXiv.2203.13818
  254. “Progress in End-to-End Optimization of Detectors for Fundamental Physics with Differentiable Programming” arXiv:2310.05673 [physics] arXiv, 2023 DOI: 10.48550/arXiv.2310.05673
  255. “Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics” arXiv:2308.16680 [hep-ex, physics:hep-ph, physics:physics, stat] arXiv, 2023 DOI: 10.48550/arXiv.2308.16680
  256. “Automatic differentiation in machine learning: a survey” arXiv:1502.05767 [cs, stat] arXiv, 2018 DOI: 10.48550/arXiv.1502.05767
  257. “Quantum Computing for High-Energy Physics: State of the Art and Challenges. Summary of the QC4HEP Working Group” arXiv:2307.03236 [hep-ex, physics:hep-lat, physics:hep-th, physics:quant-ph] arXiv, 2023 URL: http://arxiv.org/abs/2307.03236
  258. “A Full Quantum Generative Adversarial Network Model for High Energy Physics Simulations” arXiv:2305.07284 [hep-ex, physics:quant-ph] arXiv, 2023 URL: http://arxiv.org/abs/2305.07284
  259. “Generative Invertible Quantum Neural Networks” arXiv:2302.12906 [hep-ph, physics:quant-ph] arXiv, 2023 DOI: 10.48550/arXiv.2302.12906
  260. “CaloQVAE : Simulating high-energy particle-calorimeter interactions using hybrid quantum-classical generative models” arXiv:2312.03179 [hep-ex, physics:quant-ph] arXiv, 2023 DOI: 10.48550/arXiv.2312.03179
  261. “Detector Simulation Challenges for Future Accelerator Experiments” In Frontiers in Physics 10, 2022 URL: https://www.frontiersin.org/articles/10.3389/fphy.2022.913510
  262. HEP ML Community\ “A Living Review of Machine Learning for Particle Physics” URL: https://iml-wg.github.io/HEPML-LivingReview/
Citations (12)

Summary

We haven't generated a summary for this paper yet.