Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Reinforcement Learning in a Simulated Robotic Arm (2312.09468v2)

Published 28 Nov 2023 in cs.RO, cs.AI, and cs.LG

Abstract: Reinforcement learning (RL) agents need to explore their environments in order to learn optimal policies. In many environments and tasks, safety is of critical importance. The widespread use of simulators offers a number of advantages, including safe exploration which will be inevitable in cases when RL systems need to be trained directly in the physical environment (e.g. in human-robot interaction). The popular Safety Gym library offers three mobile agent types that can learn goal-directed tasks while considering various safety constraints. In this paper, we extend the applicability of safe RL algorithms by creating a customized environment with Panda robotic arm where Safety Gym algorithms can be tested. We performed pilot experiments with the popular PPO algorithm comparing the baseline with the constrained version and show that the constrained version is able to learn the equally good policy while better complying with safety constraints and taking longer training time as expected.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Luka Kovač (1 paper)
  2. Igor Farkaš (7 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com