Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Coarsening in a Homogeneous Two-Dimensional Bose Gas (2312.09248v2)

Published 14 Dec 2023 in cond-mat.quant-gas, cond-mat.stat-mech, hep-ph, physics.atom-ph, and quant-ph

Abstract: Coarsening of an isolated far-from-equilibrium quantum system is a paradigmatic many-body phenomenon, relevant from subnuclear to cosmological lengthscales, and predicted to feature universal dynamic scaling. Here, we observe universal scaling in the coarsening of a homogeneous two-dimensional Bose gas, with exponents that match analytical predictions. For different initial states, we reveal universal scaling in the experimentally accessible finite-time dynamics by elucidating and accounting for the initial-state-dependent prescaling effects. The methods we introduce establish direct comparison between cold-atom experiments and non-equilibrium field theory, and are applicable to any study of universality far from equilibrium.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435 (1977).
  2. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).
  3. S. Ramaswamy, The Mechanics and Statistics of Active Matter, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).
  4. A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 51, 481 (2002).
  5. L. F. Cugliandolo, Coarsening phenomena, C. R. Phys. 16, 257 (2015).
  6. K. Damle, S. N. Majumdar, and S. Sachdev, Phase ordering kinetics of the Bose gas, Phys. Rev. A 54, 5037 (1996).
  7. J. Berges, A. Rothkopf, and J. Schmidt, Nonthermal Fixed Points: Effective Weak Coupling for Strongly Correlated Systems Far from Equilibrium, Phys. Rev. Lett. 101, 041603 (2008).
  8. A. N. Mikheev, I. Siovitz, and T. Gasenzer, Universal dynamics and non-thermal fixed points in quantum fluids far from equilibrium, Eur. Phys. J. Spec. Top.  (2023).
  9. J. Berges and G. Hoffmeister, Nonthermal fixed points and the functional renormalization group, Nucl. Phys. B 813, 383 (2009).
  10. R. Micha and I. I. Tkachev, Turbulent thermalization, Phys. Rev. D 70, 043538 (2004).
  11. S. Bhattacharyya, J. F. Rodriguez-Nieva, and E. Demler, Universal Prethermal Dynamics in Heisenberg Ferromagnets, Phys. Rev. Lett. 125, 230601 (2020).
  12. A. Piñeiro Orioli, K. Boguslavski, and J. Berges, Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points, Phys. Rev. D 92, 025041 (2015).
  13. M. Karl and T. Gasenzer, Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas, New J. Phys. 19, 093014 (2017).
  14. I. Chantesana, A. Piñeiro Orioli, and T. Gasenzer, Kinetic theory of nonthermal fixed points in a Bose gas, Phys. Rev. A 99, 043620 (2019).
  15. L. Gresista, T. V. Zache, and J. Berges, Dimensional crossover for universal scaling far from equilibrium, Phys. Rev. A 105, 013320 (2022).
  16. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
  17. A. Mazeliauskas and J. Berges, Prescaling and Far-from-Equilibrium Hydrodynamics in the Quark-Gluon Plasma, Phys. Rev. Lett.  122, 122301 (2019).
  18. C.-M. Schmied, A. N. Mikheev, and T. Gasenzer, Prescaling in a Far-from-Equilibrium Bose Gas, Phys. Rev. Lett. 122, 170404 (2019).
  19. M. P. Heller, A. Mazeliauskas, and T. Preis, Prescaling relaxation to nonthermal attractors, arXiv:2307.07545  (2023).
  20. N. Navon, R. P. Smith, and Z. Hadzibabic, Quantum gases in optical boxes, Nat. Phys. 17, 1334 (2021).
  21. See Supplementary Materials.
  22. N. P. Proukakis, Universality of Bose–Einstein condensation and quenched formation dynamics, in Encyclopedia of Condensed Matter Physics (2nd Ed.), edited by T. Chakraborty (Academic Press, Oxford, 2024) pp. 84–123.
  23. For our trap parameters, a=30⁢\tmspace+.1667⁢e⁢m⁢a0𝑎30\tmspace.1667𝑒𝑚subscript𝑎0a=30\tmspace+{.1667em}a_{0}italic_a = 30 + .1667 italic_e italic_m italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT corresponds to the dimensionless 2D coupling strength \mathaccentV⁢t⁢i⁢l⁢d⁢e⁢07⁢E⁢g=0.026\mathaccentV𝑡𝑖𝑙𝑑𝑒07𝐸𝑔0.026\mathaccentV{tilde}07E{g}=0.026italic_t italic_i italic_l italic_d italic_e 07 italic_E italic_g = 0.026 and the Berezinskii-Kosterlitz-Thouless critical temperature is TBKT=230 nKsubscript𝑇BKTtimes230nanokelvinT_{\text{BKT}}=$230\text{\,}\mathrm{nK}$italic_T start_POSTSUBSCRIPT BKT end_POSTSUBSCRIPT = start_ARG 230 end_ARG start_ARG times end_ARG start_ARG roman_nK end_ARG [45].
  24. Z. Hadzibabic and J. Dalibard, Two-dimensional Bose fluids: An atomic physics perspective, Riv. del Nuovo Cim. 34, 389 (2011).
  25. This is also hinted at by the fact that the three lines in Fig. 2(d) are parallel.
  26. A. J. Groszek, M. J. Davis, and T. P. Simula, Decaying quantum turbulence in a two-dimensional Bose-Einstein condensate at finite temperature, SciPost Phys. 8, 039 (2020).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com