2000 character limit reached
Universal Coarsening in a Homogeneous Two-Dimensional Bose Gas (2312.09248v2)
Published 14 Dec 2023 in cond-mat.quant-gas, cond-mat.stat-mech, hep-ph, physics.atom-ph, and quant-ph
Abstract: Coarsening of an isolated far-from-equilibrium quantum system is a paradigmatic many-body phenomenon, relevant from subnuclear to cosmological lengthscales, and predicted to feature universal dynamic scaling. Here, we observe universal scaling in the coarsening of a homogeneous two-dimensional Bose gas, with exponents that match analytical predictions. For different initial states, we reveal universal scaling in the experimentally accessible finite-time dynamics by elucidating and accounting for the initial-state-dependent prescaling effects. The methods we introduce establish direct comparison between cold-atom experiments and non-equilibrium field theory, and are applicable to any study of universality far from equilibrium.
- P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435 (1977).
- M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).
- S. Ramaswamy, The Mechanics and Statistics of Active Matter, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).
- A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 51, 481 (2002).
- L. F. Cugliandolo, Coarsening phenomena, C. R. Phys. 16, 257 (2015).
- K. Damle, S. N. Majumdar, and S. Sachdev, Phase ordering kinetics of the Bose gas, Phys. Rev. A 54, 5037 (1996).
- J. Berges, A. Rothkopf, and J. Schmidt, Nonthermal Fixed Points: Effective Weak Coupling for Strongly Correlated Systems Far from Equilibrium, Phys. Rev. Lett. 101, 041603 (2008).
- A. N. Mikheev, I. Siovitz, and T. Gasenzer, Universal dynamics and non-thermal fixed points in quantum fluids far from equilibrium, Eur. Phys. J. Spec. Top. (2023).
- J. Berges and G. Hoffmeister, Nonthermal fixed points and the functional renormalization group, Nucl. Phys. B 813, 383 (2009).
- R. Micha and I. I. Tkachev, Turbulent thermalization, Phys. Rev. D 70, 043538 (2004).
- S. Bhattacharyya, J. F. Rodriguez-Nieva, and E. Demler, Universal Prethermal Dynamics in Heisenberg Ferromagnets, Phys. Rev. Lett. 125, 230601 (2020).
- A. Piñeiro Orioli, K. Boguslavski, and J. Berges, Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points, Phys. Rev. D 92, 025041 (2015).
- M. Karl and T. Gasenzer, Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas, New J. Phys. 19, 093014 (2017).
- I. Chantesana, A. Piñeiro Orioli, and T. Gasenzer, Kinetic theory of nonthermal fixed points in a Bose gas, Phys. Rev. A 99, 043620 (2019).
- L. Gresista, T. V. Zache, and J. Berges, Dimensional crossover for universal scaling far from equilibrium, Phys. Rev. A 105, 013320 (2022).
- P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
- A. Mazeliauskas and J. Berges, Prescaling and Far-from-Equilibrium Hydrodynamics in the Quark-Gluon Plasma, Phys. Rev. Lett. 122, 122301 (2019).
- C.-M. Schmied, A. N. Mikheev, and T. Gasenzer, Prescaling in a Far-from-Equilibrium Bose Gas, Phys. Rev. Lett. 122, 170404 (2019).
- M. P. Heller, A. Mazeliauskas, and T. Preis, Prescaling relaxation to nonthermal attractors, arXiv:2307.07545 (2023).
- N. Navon, R. P. Smith, and Z. Hadzibabic, Quantum gases in optical boxes, Nat. Phys. 17, 1334 (2021).
- See Supplementary Materials.
- N. P. Proukakis, Universality of Bose–Einstein condensation and quenched formation dynamics, in Encyclopedia of Condensed Matter Physics (2nd Ed.), edited by T. Chakraborty (Academic Press, Oxford, 2024) pp. 84–123.
- For our trap parameters, a=30\tmspace+.1667ema0𝑎30\tmspace.1667𝑒𝑚subscript𝑎0a=30\tmspace+{.1667em}a_{0}italic_a = 30 + .1667 italic_e italic_m italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT corresponds to the dimensionless 2D coupling strength \mathaccentVtilde07Eg=0.026\mathaccentV𝑡𝑖𝑙𝑑𝑒07𝐸𝑔0.026\mathaccentV{tilde}07E{g}=0.026italic_t italic_i italic_l italic_d italic_e 07 italic_E italic_g = 0.026 and the Berezinskii-Kosterlitz-Thouless critical temperature is TBKT=230 nKsubscript𝑇BKTtimes230nanokelvinT_{\text{BKT}}=$230\text{\,}\mathrm{nK}$italic_T start_POSTSUBSCRIPT BKT end_POSTSUBSCRIPT = start_ARG 230 end_ARG start_ARG times end_ARG start_ARG roman_nK end_ARG [45].
- Z. Hadzibabic and J. Dalibard, Two-dimensional Bose fluids: An atomic physics perspective, Riv. del Nuovo Cim. 34, 389 (2011).
- This is also hinted at by the fact that the three lines in Fig. 2(d) are parallel.
- A. J. Groszek, M. J. Davis, and T. P. Simula, Decaying quantum turbulence in a two-dimensional Bose-Einstein condensate at finite temperature, SciPost Phys. 8, 039 (2020).