Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection and Defense of Unlearnable Examples (2312.08898v1)

Published 14 Dec 2023 in cs.LG, cs.AI, and cs.CR

Abstract: Privacy preserving has become increasingly critical with the emergence of social media. Unlearnable examples have been proposed to avoid leaking personal information on the Internet by degrading generalization abilities of deep learning models. However, our study reveals that unlearnable examples are easily detectable. We provide theoretical results on linear separability of certain unlearnable poisoned dataset and simple network based detection methods that can identify all existing unlearnable examples, as demonstrated by extensive experiments. Detectability of unlearnable examples with simple networks motivates us to design a novel defense method. We propose using stronger data augmentations coupled with adversarial noises generated by simple networks, to degrade the detectability and thus provide effective defense against unlearnable examples with a lower cost. Adversarial training with large budgets is a widely-used defense method on unlearnable examples. We establish quantitative criteria between the poison and adversarial budgets which determine the existence of robust unlearnable examples or the failure of the adversarial defense.

Citations (4)

Summary

We haven't generated a summary for this paper yet.