Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Structure Discovery for Scanning Tunneling Microscopy (2312.08854v2)

Published 14 Dec 2023 in cond-mat.mtrl-sci

Abstract: Scanning tunnelling microscopy (STM) with a functionalized tip apex reveals the geometric and electronic structure of a sample within the same experiment. However, the complex nature of the signal makes images difficult to interpret and has so far limited most research to planar samples with a known chemical composition. Here, we present automated structure discovery for STM (ASD-STM), a machine learning tool for predicting the atomic structure directly from an STM image, by building upon successful methods for structure discovery in non-contact atomic force microscopy (nc-AFM). We apply the method on various organic molecules and achieve good accuracy on structure predictions and chemical identification on a qualitative level, while highlighting future development requirements to ASD-STM. This method is directly applicable to experimental STM images of organic molecules, making structure discovery available for a wider SPM audience outside of nc-AFM. This work also opens doors for more advanced machine learning methods to be developed for STM discovery.

Citations (1)

Summary

We haven't generated a summary for this paper yet.