Clustering with Few Disks to Minimize the Sum of Radii (2312.08803v2)
Abstract: Given a set of $n$ points in the Euclidean plane, the $k$-MinSumRadius problem asks to cover this point set using $k$ disks with the objective of minimizing the sum of the radii of the disks. After a long line of research on related problems, it was finally discovered that this problem admits a polynomial time algorithm [GKKPV~'12]; however, the running time of this algorithm is $O(n{881})$, and its relevance is thereby mostly of theoretical nature. A practically and structurally interesting special case of the $k$-MinSumRadius problem is that of small $k$. For the $2$-MinSumRadius problem, a near-quadratic time algorithm with expected running time $O(n2 \log2 n \log2 \log n)$ was given over 30 years ago [Eppstein~'92]. We present the first improvement of this result, namely, a near-linear time algorithm to compute the $2$-MinSumRadius that runs in expected $O(n \log2 n \log2 \log n)$ time. We generalize this result to any constant dimension $d$, for which we give an $O(n{2-1/(\lceil d/2\rceil + 1) + \varepsilon})$ time algorithm. Additionally, we give a near-quadratic time algorithm for $3$-MinSumRadius in the plane that runs in expected $O(n2 \log2 n \log2 \log n)$ time. All of these algorithms rely on insights that uncover a surprisingly simple structure of optimal solutions: we can specify a linear number of lines out of which one separates one of the clusters from the remaining clusters in an optimal solution.
- Fast fencing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 564–573. ACM, 2018. doi:10.1145/3188745.3188878.
- Minimum perimeter-sum partitions in the plane. Discret. Comput. Geom., 63(2):483–505, 2020. doi:10.1007/s00454-019-00059-0.
- Dynamic half-space range reporting and its applications. Algorithmica, 13(4):325–345, 1995. doi:10.1007/BF01293483.
- Planar geometric location problems. Algorithmica, 11(2):185–195, 1994. doi:10.1007/BF01182774.
- NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn., 75(2):245–248, 2009. doi:10.1007/s10994-009-5103-0.
- Minimum-cost coverage of point sets by disks. In Proceedings of the 22nd ACM Symposium on Computational Geometry, SoCG, pages 449–458. ACM, 2006. doi:10.1145/1137856.1137922.
- Approximate clustering via core-sets. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing, STOC, pages 250–257. ACM, 2002. doi:10.1145/509907.509947.
- A (3+ϵitalic-ϵ\epsilonitalic_ϵ)-approximation algorithm for the minimum sum of radii problem with outliers and extensions for generalized lower bounds. CoRR, abs/2311.06111, 2023. arXiv:2311.06111, doi:10.48550/ARXIV.2311.06111.
- Geometric clusterings. J. Algorithms, 12(2):341–356, 1991. doi:10.1016/0196-6774(91)90007-L.
- Timothy M. Chan. More planar two-center algorithms. Comput. Geom., 13(3):189–198, 1999. doi:10.1016/S0925-7721(99)00019-X.
- On the fine-grained complexity of small-size geometric set cover and discrete k𝑘kitalic_k-center for small k𝑘kitalic_k. In 50th International Colloquium on Automata, Languages, and Programming, ICALP, volume 261 of LIPIcs, pages 34:1–34:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.34.
- Clustering to minimize the sum of cluster diameters. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, STOC, pages 1–10. ACM, 2001. doi:10.1145/380752.380753.
- Optimal algorithm for the planar two-center problem. CoRR, abs/2007.08784, 2020. arXiv:2007.08784.
- Random projection trees for vector quantization. IEEE Trans. Inf. Theory, 55(7):3229–3242, 2009. doi:10.1109/TIT.2009.2021326.
- Zvi Drezner. On the rectangular p-center problem. Naval Research Logistics (NRL), 34(2):229–234, 1987.
- David Eppstein. Dynamic three-dimensional linear programming. INFORMS J. Comput., 4(4):360–368, 1992. doi:10.1287/ijoc.4.4.360.
- David Eppstein. Faster construction of planar two-centers. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 131–138. ACM/SIAM, 1997.
- On clustering to minimize the sum of radii. SIAM J. Comput., 41(1):47–60, 2012. doi:10.1137/100798144.
- Three-clustering of points in the plane. Comput. Geom., 8:87–95, 1997. doi:10.1016/S0925-7721(96)00022-3.
- John Hershberger. Minimizing the sum of diameters efficiently. Comput. Geom., 2:111–118, 1992. doi:10.1016/0925-7721(92)90028-Q.
- Michael Hoffmann. A simple linear algorithm for computing rectilinear 3-centers. Comput. Geom., 31(3):150–165, 2005. doi:10.1016/J.COMGEO.2004.12.002.
- Applications of weighted voronoi diagrams and randomization to variance-based k-clustering. In Proceedings of the 10th Annual Symposium on Computational Geometry, SoCG, pages 332–339. ACM, 1994. doi:10.1145/177424.178042.
- Geometric complexity of some location problems. Algorithmica, 1(2):193–211, 1986. doi:10.1007/BF01840442.
- The planar k-means problem is NP-hard. Theor. Comput. Sci., 442:13–21, 2012. doi:10.1016/j.tcs.2010.05.034.
- Nimrod Megiddo. Linear-time algorithms for linear programming in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and related problems. SIAM J. Comput., 12(4):759–776, 1983. doi:10.1137/0212052.
- On the complexity of some common geometric location problems. SIAM J. Comput., 13(1):182–196, 1984. doi:10.1137/0213014.
- Doron Nussbaum. Rectilinear p-piercing problems. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, pages 316–323, 1997. doi:10.1145/258726.258828.
- Michael Segal. On piercing sets of axis-parallel rectangles and rings. In Proceedings of the Annual European Symposium on Algorithms, ESA 1997, pages 430–442, 1997. doi:10.1007/3-540-63397-9_33.
- Micha Sharir. A near-linear algorithm for the planar 2-center problem. Discret. Comput. Geom., 18(2):125–134, 1997. doi:10.1007/PL00009311.
- Rectilinear and polygonal p-piercing and p-center problems. In Symposium on Computational Geometry (SoCG 1996), pages 122–132, 1996. doi:10.1145/237218.237255.
- Haitao Wang. On the planar two-center problem and circular hulls. Discret. Comput. Geom., 68(4):1175–1226, 2022. doi:10.1007/s00454-021-00358-5.
- Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends in Computer Science, Proceedings [on occasion of H. Maurer’s 50th birthday], volume 555 of Lecture Notes in Computer Science, pages 359–370. Springer, 1991. doi:10.1007/BFB0038202.