Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VSFormer: Visual-Spatial Fusion Transformer for Correspondence Pruning (2312.08774v3)

Published 14 Dec 2023 in cs.CV

Abstract: Correspondence pruning aims to find correct matches (inliers) from an initial set of putative correspondences, which is a fundamental task for many applications. The process of finding is challenging, given the varying inlier ratios between scenes/image pairs due to significant visual differences. However, the performance of the existing methods is usually limited by the problem of lacking visual cues (\eg texture, illumination, structure) of scenes. In this paper, we propose a Visual-Spatial Fusion Transformer (VSFormer) to identify inliers and recover camera poses accurately. Firstly, we obtain highly abstract visual cues of a scene with the cross attention between local features of two-view images. Then, we model these visual cues and correspondences by a joint visual-spatial fusion module, simultaneously embedding visual cues into correspondences for pruning. Additionally, to mine the consistency of correspondences, we also design a novel module that combines the KNN-based graph and the transformer, effectively capturing both local and global contexts. Extensive experiments have demonstrated that the proposed VSFormer outperforms state-of-the-art methods on outdoor and indoor benchmarks. Our code is provided at the following repository: https://github.com/sugar-fly/VSFormer.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com