Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KDAS: Knowledge Distillation via Attention Supervision Framework for Polyp Segmentation (2312.08555v3)

Published 13 Dec 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Polyp segmentation, a contentious issue in medical imaging, has seen numerous proposed methods aimed at improving the quality of segmented masks. While current state-of-the-art techniques yield impressive results, the size and computational cost of these models create challenges for practical industry applications. To address this challenge, we present KDAS, a Knowledge Distillation framework that incorporates attention supervision, and our proposed Symmetrical Guiding Module. This framework is designed to facilitate a compact student model with fewer parameters, allowing it to learn the strengths of the teacher model and mitigate the inconsistency between teacher features and student features, a common challenge in Knowledge Distillation, via the Symmetrical Guiding Module. Through extensive experiments, our compact models demonstrate their strength by achieving competitive results with state-of-the-art methods, offering a promising approach to creating compact models with high accuracy for polyp segmentation and in the medical imaging field. The implementation is available on https://github.com/huyquoctrinh/KDAS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in MICCAI, 2015.
  2. F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, “ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data,” ISPRS Journal of Photogrammetry and Remote Sensing, 2020.
  3. D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. De Lange, P. Halvorsen, and H. D. Johansen, “ResUNet++: An Advanced Architecture for Medical Image Segmentation,” in ISM, 2019.
  4. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A Nested U-Net Architecture for Medical Image Segmentation,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018.
  5. N. K. Tomar, D. Jha, S. Ali, H. D. Johansen, D. Johansen, M. A. Riegler, and P. Halvorsen, “Ddanet: Dual decoder attention network for automatic polyp segmentation,” in Pattern Recognition. ICPR International Workshops and Challenges, 2021.
  6. D. Bo, W. Wenhai, F. Deng-Ping, L. Jinpeng, F. Huazhu, and S. Ling, “Polyp-PVT: Polyp Segmentation with PyramidVision Transformers,” CAAI AIR, 2023.
  7. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
  8. Q. Trinh, “Meta-polyp: A baseline for efficient polyp segmentation,” in 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS).   Los Alamitos, CA, USA: IEEE Computer Society, jun 2023, pp. 742–747. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CBMS58004.2023.00312
  9. V. Mandujano-Cornejo and J. A. Montoya-Zegarra, “Polyp2seg: Improved polyp segmentation with vision transformer,” in MICCAI, 2022.
  10. W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm: Deep self-attention distillation for task-agnostic compression of pre-trained transformers,” Advances in Neural Information Processing Systems, vol. 33, pp. 5776–5788, 2020.
  11. D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Pranet: Parallel reverse attention network for polyp segmentation,” in MICCAI, 2020.
  12. D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. d. Lange, D. Johansen, and H. D. Johansen, “Kvasir-SEG: A Segmented Polyp Dataset,” in Multimedia Modeling, 2020.
  13. J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño, “WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” CMIG, pp. 99–111, 2015.
  14. N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information,” TMI, pp. 630–644, 2016.
  15. D. Vázquez, J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, A. M. López, A. Romero, M. Drozdzal, and A. C. Courville, “A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images,” Journal of Healthcare Engineering, 2017.
  16. J. S. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Towards embedded detection of polyps in WCE images for early diagnosis of colorectal cancer,” IJCARS, pp. 283–293, 2014.
  17. J. Bertels, T. Eelbode, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops, and M. B. Blaschko, “Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice,” in MICCAI, 2019.
  18. Y. Fang, C. Chen, Y. Yuan, and K.-y. Tong, “Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation,” in MICCAI, 2019.
  19. X. Zhao, L. Zhang, and H. Lu, “Automatic Polyp Segmentation via Multi-scale Subtraction Network,” in MICCAI, 2021.
  20. T. Yu and Q. Wu, “Hardnet-cps: Colorectal polyp segmentation based on harmonic densely united network,” Biomedical Signal Processing and Control, vol. 85, p. 104953, 2023.
  21. T.-H. Nguyen-Mau, Q.-H. Trinh, N.-T. Bui, P.-T. V. Thi, M.-V. Nguyen, X.-N. Cao, M.-T. Tran, and H.-D. Nguyen, “PEFNet: Positional Embedding Feature for Polyp Segmentation,” in MultiMedia Modeling, 2023.

Summary

We haven't generated a summary for this paper yet.