Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vision Transformer-Based Deep Learning for Histologic Classification of Endometrial Cancer (2312.08479v2)

Published 13 Dec 2023 in cs.CV

Abstract: Endometrial cancer, the fourth most common cancer in females in the United States, with the lifetime risk for developing this disease is approximately 2.8% in women. Precise histologic evaluation and molecular classification of endometrial cancer is important for effective patient management and determining the best treatment modalities. This study introduces EndoNet, which uses convolutional neural networks for extracting histologic features and a vision transformer for aggregating these features and classifying slides based on their visual characteristics into high- and low- grade. The model was trained on 929 digitized hematoxylin and eosin-stained whole-slide images of endometrial cancer from hysterectomy cases at Dartmouth-Health. It classifies these slides into low-grade (Endometroid Grades 1 and 2) and high-grade (endometroid carcinoma FIGO grade 3, uterine serous carcinoma, carcinosarcoma) categories. EndoNet was evaluated on an internal test set of 110 patients and an external test set of 100 patients from the public TCGA database. The model achieved a weighted average F1-score of 0.91 (95% CI: 0.86-0.95) and an AUC of 0.95 (95% CI: 0.89-0.99) on the internal test, and 0.86 (95% CI: 0.80-0.94) for F1-score and 0.86 (95% CI: 0.75-0.93) for AUC on the external test. Pending further validation, EndoNet has the potential to support pathologists without the need of manual annotations in classifying the grades of gynecologic pathology tumors.

Summary

We haven't generated a summary for this paper yet.