Spectral method for metric perturbations of black holes: Kerr background case in general relativity (2312.08435v2)
Abstract: We present a novel approach, $\textit{Metric pErTuRbations wIth speCtral methodS}$ (METRICS), to calculate the gravitational metric perturbations and the quasinormal-mode frequencies of rotating black holes of any spin without decoupling the linearized field equations. We demonstrate the method by applying it to perturbations of Kerr black holes of any spin, simultaneously solving all ten linearized Einstein equations in the Regge-Wheeler gauge through purely algebraic methods and computing the fundamental (co-rotating) quadrupole mode frequency at various spins. We moreover show that the METRICS approach is accurate and precise, yielding (i) quasinormal mode frequencies that agree with Leaver's, continuous-fraction solution with a relative fractional error smaller than $10{-5}$ for all dimensionless spins below up to 0.95, and (ii) metric perturbations that lead to Teukolsky functions that also agree with Leaver's solution with mismatches below $1\%$ for all spins below 0.9. By not requiring the decoupling or the angular separation of the linearized field equations, the METRICS approach has the potential to be straightforwardly adapted for the computation of the quasinormal-mode frequencies of rotating black holes of any spin beyond general relativity or in the presence of matter.
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys. Rev. Lett. 116, 241103 (2016b), arXiv:1606.04855 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, VIRGO), “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2,” Phys. Rev. Lett. 118, 221101 (2017a), [Erratum: Phys.Rev.Lett. 121, 129901 (2018)], arXiv:1706.01812 [gr-qc] .
- B. . P. . Abbott et al. (LIGO Scientific, Virgo), “GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence,” Astrophys. J. Lett. 851, L35 (2017b), arXiv:1711.05578 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence,” Phys. Rev. Lett. 119, 141101 (2017c), arXiv:1709.09660 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119, 161101 (2017d), arXiv:1710.05832 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of general relativity with GW150914,” Phys. Rev. Lett. 116, 221101 (2016c), [Erratum: Phys.Rev.Lett. 121, 129902 (2018)], arXiv:1602.03841 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Binary Black Hole Mergers in the first Advanced LIGO Observing Run,” Phys. Rev. X 6, 041015 (2016d), [Erratum: Phys.Rev.X 8, 039903 (2018)], arXiv:1606.04856 [gr-qc] .
- B. P. Abbott et al. (KAGRA, LIGO Scientific, Virgo, VIRGO), “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA,” Living Rev. Rel. 21, 3 (2018), arXiv:1304.0670 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1,” Phys. Rev. D 100, 104036 (2019b), arXiv:1903.04467 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), “GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses,” Phys. Rev. D 102, 043015 (2020a), arXiv:2004.08342 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), “GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object,” Astrophys. J. Lett. 896, L44 (2020b), arXiv:2006.12611 [astro-ph.HE] .
- R. Takahashi and T. Nakamura, “Wave effects in gravitational lensing of gravitational waves from chirping binaries,” Astrophys. J. 595, 1039–1051 (2003), arXiv:astro-ph/0305055 .
- R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “Tests of General Relativity with GWTC-3,” (2021a), arXiv:2112.06861 [gr-qc] .
- S. Perkins and N. Yunes, “Are Parametrized Tests of General Relativity with Gravitational Waves Robust to Unknown Higher Post-Newtonian Order Effects?” (2022), arXiv:2201.02542 [gr-qc] .
- N. Yunes and X. Siemens, “Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing-Arrays,” Living Rev. Rel. 16, 9 (2013), arXiv:1304.3473 [gr-qc] .
- C. M. Will, “The confrontation between general relativity and experiment,” Living Reviews in Relativity 17, 4 (2014).
- I. H. Stairs, “Testing general relativity with pulsar timing,” Living Reviews in Relativity 6, 5 (2003).
- N. Wex and M. Kramer, “Gravity Tests with Radio Pulsars,” Universe 6, 156 (2020).
- K. Yagi and L. C. Stein, “Black Hole Based Tests of General Relativity,” Class. Quant. Grav. 33, 054001 (2016), arXiv:1602.02413 [gr-qc] .
- E. Berti, K. Yagi, and N. Yunes, “Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (I) Inspiral-Merger,” Gen. Rel. Grav. 50, 46 (2018a), arXiv:1801.03208 [gr-qc] .
- R. Nair, S. Perkins, H. O. Silva, and N. Yunes, “Fundamental Physics Implications for Higher-Curvature Theories from Binary Black Hole Signals in the LIGO-Virgo Catalog GWTC-1,” Phys. Rev. Lett. 123, 191101 (2019), arXiv:1905.00870 [gr-qc] .
- E. Berti, K. Yagi, H. Yang, and N. Yunes, “Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (II) Ringdown,” Gen. Rel. Grav. 50, 49 (2018b), arXiv:1801.03587 [gr-qc] .
- S. W. Hawking, “The Information Paradox for Black Holes,” (2015) arXiv:1509.01147 [hep-th] .
- A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05, 013 (2020), arXiv:1911.12333 [hep-th] .
- S. B. Giddings, “The Black hole information paradox,” in PASCOS / HOPKINS 1995 (Joint Meeting of the International Symposium on Particles, Strings and Cosmology and the 19th Johns Hopkins Workshop on Current Problems in Particle Theory) (1995) pp. 415–428, arXiv:hep-th/9508151 .
- J. Preskill, “Do black holes destroy information?” in International Symposium on Black holes, Membranes, Wormholes and Superstrings (1992) arXiv:hep-th/9209058 .
- I. Kanitscheider, K. Skenderis, and M. Taylor, “Fuzzballs with internal excitations,” JHEP 06, 056 (2007), arXiv:0704.0690 [hep-th] .
- I. Bena, S. Giusto, E. J. Martinec, R. Russo, M. Shigemori, D. Turton, and N. P. Warner, “Smooth horizonless geometries deep inside the black-hole regime,” Phys. Rev. Lett. 117, 201601 (2016), arXiv:1607.03908 [hep-th] .
- A. D. Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,” Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967).
- K. Petraki and R. R. Volkas, “Review of asymmetric dark matter,” Int. J. Mod. Phys. A 28, 1330028 (2013), arXiv:1305.4939 [hep-ph] .
- M. Gell-Mann and J. B. Hartle, “Time symmetry and asymmetry in quantum mechanics and quantum cosmology,” in 4th International Conference on Ion Sources (1991) arXiv:gr-qc/9304023 .
- S. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” eConf C0602061, 06 (2006), arXiv:hep-th/0601213 .
- S. Tsujikawa, “Modified gravity models of dark energy,” Lect. Notes Phys. 800, 99–145 (2010), arXiv:1101.0191 [gr-qc] .
- S. Perlmutter et al. (Supernova Cosmology Project), “Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 high redshift supernovae,” Astrophys. J. 517, 565–586 (1999), arXiv:astro-ph/9812133 .
- A. G. Riess et al. (Supernova Search Team), “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998), arXiv:astro-ph/9805201 .
- Y. Sofue and V. Rubin, “Rotation curves of spiral galaxies,” Ann. Rev. Astron. Astrophys. 39, 137–174 (2001), arXiv:astro-ph/0010594 .
- G. Bertone and D. Hooper, “History of dark matter,” Rev. Mod. Phys. 90, 045002 (2018), arXiv:1605.04909 [astro-ph.CO] .
- S. Alexander and N. Yunes, “Chern-Simons Modified General Relativity,” Phys. Rept. 480, 1–55 (2009), arXiv:0907.2562 [hep-th] .
- R. Jackiw and S. Y. Pi, “Chern-Simons modification of general relativity,” Phys. Rev. D 68, 104012 (2003), arXiv:gr-qc/0308071 .
- S. H. S. Alexander and S. J. Gates, Jr., “Can the string scale be related to the cosmic baryon asymmetry?” JCAP 06, 018 (2006), arXiv:hep-th/0409014 .
- P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Phys. Rev. D 54, 5049–5058 (1996), arXiv:hep-th/9511071 .
- T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity,” Phys. Rev. Lett. 112, 251102 (2014), arXiv:1312.3622 [gr-qc] .
- S. Mignemi and N. R. Stewart, “Charged black holes in effective string theory,” Phys. Rev. D 47, 5259–5269 (1993), arXiv:hep-th/9212146 .
- A. K.-W. Chung, P. Wagle, and N. Yunes, “Spectral method for the gravitational perturbations of black holes: Schwarzschild background case,” Phys. Rev. D 107, 124032 (2023), arXiv:2302.11624 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run,” (2021b), arXiv:2111.03606 [gr-qc] .
- N. Yunes and F. Pretorius, “Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation,” Phys. Rev. D 79, 084043 (2009), arXiv:0902.4669 [gr-qc] .
- N. Yunes and L. C. Stein, “Non-Spinning Black Holes in Alternative Theories of Gravity,” Phys. Rev. D 83, 104002 (2011), arXiv:1101.2921 [gr-qc] .
- L. Aresté Saló, S. E. Brady, K. Clough, D. Doneva, T. Evstafyeva, P. Figueras, T. França, L. Rossi, and S. Yao, “GRFolres: A code for modified gravity simulations in strong gravity,” (2023), arXiv:2309.06225 [gr-qc] .
- M. Okounkova, L. C. Stein, M. A. Scheel, and S. A. Teukolsky, “Numerical binary black hole collisions in dynamical Chern-Simons gravity,” Phys. Rev. D 100, 104026 (2019), arXiv:1906.08789 [gr-qc] .
- A. D. Kovács and H. S. Reall, “Well-posed formulation of Lovelock and Horndeski theories,” Phys. Rev. D 101, 124003 (2020), arXiv:2003.08398 [gr-qc] .
- R. Cayuso, P. Figueras, T. França, and L. Lehner, “Modelling self-consistently beyond General Relativity,” (2023), arXiv:2303.07246 [gr-qc] .
- T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108, 1063–1069 (1957a).
- F. J. Zerilli, “Effective potential for even parity Regge-Wheeler gravitational perturbation equations,” Phys. Rev. Lett. 24, 737–738 (1970a).
- V. Moncrief, “Gravitational perturbations of spherically symmetric systems. I. The exterior problem.” Annals Phys. 88, 323–342 (1974).
- T. Regge and J. A. Wheeler, “Stability of a schwarzschild singularity,” Phys. Rev. 108, 1063–1069 (1957b).
- F. J. Zerilli, ‘‘Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics,” Phys. Rev. D 2, 2141–2160 (1970b).
- C. Molina, P. Pani, V. Cardoso, and L. Gualtieri, “Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity,” Phys. Rev. D 81, 124021 (2010), arXiv:1004.4007 [gr-qc] .
- V. Cardoso and L. Gualtieri, ‘‘Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity,” Phys. Rev. D 80, 064008 (2009a), [Erratum: Phys.Rev.D 81, 089903 (2010)], arXiv:0907.5008 [gr-qc] .
- J. L. Blázquez-Salcedo, C. F. B. Macedo, V. Cardoso, V. Ferrari, L. Gualtieri, F. S. Khoo, J. Kunz, and P. Pani, “Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: Stability, ringdown, and gravitational-wave emission,” Phys. Rev. D 94, 104024 (2016), arXiv:1609.01286 [gr-qc] .
- P. Wagle, N. Yunes, and H. O. Silva, “Quasinormal modes of slowly-rotating black holes in dynamical Chern-Simons gravity,” Phys. Rev. D 105, 124003 (2022a), arXiv:2103.09913 [gr-qc] .
- L. Pierini and L. Gualtieri, “Quasi-normal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: the first order in rotation,” Phys. Rev. D 103, 124017 (2021a), arXiv:2103.09870 [gr-qc] .
- L. Pierini and L. Gualtieri, “Quasinormal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: The second order in rotation,” Phys. Rev. D 106, 104009 (2022a), arXiv:2207.11267 [gr-qc] .
- P. A. Cano, K. Fransen, and T. Hertog, “Ringing of rotating black holes in higher-derivative gravity,” Phys. Rev. D 102, 044047 (2020), arXiv:2005.03671 [gr-qc] .
- A. De Felice and S. Tsujikawa, “Can we distinguish black holes with electric and magnetic charges from quasinormal modes?” (2023), arXiv:2312.03191 [gr-qc] .
- E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3, 566–578 (1962).
- S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185, 635–647 (1973).
- S. A. Teukolsky, “Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations,” Phys. Rev. Lett. 29, 1114–1118 (1972).
- W. H. Press and S. A. Teukolsky, “Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric,” Astrophys. J. 185, 649–674 (1973).
- S. A. Teukolsky and W. H. Press, “Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnet ic radiation,” Astrophys. J. 193, 443–461 (1974).
- D. Li, P. Wagle, Y. Chen, and N. Yunes, “Perturbations of spinning black holes beyond General Relativity: Modified Teukolsky equation,” (2022), arXiv:2206.10652 [gr-qc] .
- A. Hussain and A. Zimmerman, “An approach to computing spectral shifts for black holes beyond Kerr,” (2022), arXiv:2206.10653 [gr-qc] .
- P. A. Cano, K. Fransen, T. Hertog, and S. Maenaut, “Quasinormal modes of rotating black holes in higher-derivative gravity,” (2023a), arXiv:2307.07431 [gr-qc] .
- P. A. Cano, K. Fransen, T. Hertog, and S. Maenaut, “Gravitational ringing of rotating black holes in higher-derivative gravity,” Phys. Rev. D 105, 024064 (2022), arXiv:2110.11378 [gr-qc] .
- P. A. Cano, K. Fransen, T. Hertog, and S. Maenaut, “Universal Teukolsky equations and black hole perturbations in higher-derivative gravity,” Phys. Rev. D 108, 024040 (2023b), arXiv:2304.02663 [gr-qc] .
- P. Wagle, D. Li, Y. Chen, and N. Yunes, “Perturbations of spinning black holes in dynamical Chern-Simons gravity I. Slow rotation equations,” (2023), arXiv:2311.07706 [gr-qc] .
- P. L. Chrzanowski, “Vector Potential and Metric Perturbations of a Rotating Black Hole,” Phys. Rev. D 11, 2042–2062 (1975a).
- V. Toomani, P. Zimmerman, A. Spiers, S. Hollands, A. Pound, and S. R. Green, “New metric reconstruction scheme for gravitational self-force calculations,” Class. Quant. Grav. 39, 015019 (2022), arXiv:2108.04273 [gr-qc] .
- B. F. Whiting and L. R. Price, “Metric reconstruction from weyl scalars,” Classical and Quantum Gravity 22, S589–S604 (2005).
- C. O. Lousto, “Reconstruction of black hole metric perturbations from Weyl curvature. II. The Regge-Wheeler gauge,” Class. Quant. Grav. 22, S569–S588 (2005), arXiv:gr-qc/0501088 .
- J. L. Ripley, N. Loutrel, E. Giorgi, and F. Pretorius, “Numerical computation of second order vacuum perturbations of Kerr black holes,” Phys. Rev. D 103, 104018 (2021), arXiv:2010.00162 [gr-qc] .
- J. L. Ripley, “Computing the quasinormal modes and eigenfunctions for the Teukolsky equation using horizon penetrating, hyperboloidally compactified coordinates,” Class. Quant. Grav. 39, 145009 (2022), arXiv:2202.03837 [gr-qc] .
- A. Jansen, “Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes,” Eur. Phys. J. Plus 132, 546 (2017), arXiv:1709.09178 [gr-qc] .
- F. C. Eperon, B. Ganchev, and J. E. Santos, “Plausible scenario for a generic violation of the weak cosmic censorship conjecture in asymptotically flat four dimensions,” Phys. Rev. D 101, 041502 (2020), arXiv:1906.11257 [gr-qc] .
- O. J. C. Dias, H. S. Reall, and J. E. Santos, “Strong cosmic censorship for charged de Sitter black holes with a charged scalar field,” Class. Quant. Grav. 36, 045005 (2019), arXiv:1808.04832 [gr-qc] .
- V. Cardoso, O. J. C. Dias, G. S. Hartnett, L. Lehner, and J. E. Santos, “Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS,” JHEP 04, 183 (2014a), arXiv:1312.5323 [hep-th] .
- O. J. C. Dias, M. Godazgar, and J. E. Santos, “Linear Mode Stability of the Kerr-Newman Black Hole and Its Quasinormal Modes,” Phys. Rev. Lett. 114, 151101 (2015), arXiv:1501.04625 [gr-qc] .
- O. J. C. Dias, M. Godazgar, J. E. Santos, G. Carullo, W. Del Pozzo, and D. Laghi, “Eigenvalue repulsions in the quasinormal spectra of the Kerr-Newman black hole,” Phys. Rev. D 105, 084044 (2022a), arXiv:2109.13949 [gr-qc] .
- O. J. C. Dias, M. Godazgar, and J. E. Santos, “Eigenvalue repulsions and quasinormal mode spectra of Kerr-Newman: an extended study,” JHEP 07, 076 (2022b), arXiv:2205.13072 [gr-qc] .
- D. Langlois, K. Noui, and H. Roussille, “Black hole perturbations in modified gravity,” Phys. Rev. D 104, 124044 (2021a), arXiv:2103.14750 [gr-qc] .
- D. Langlois, K. Noui, and H. Roussille, “Asymptotics of linear differential systems and application to quasinormal modes of nonrotating black holes,” Phys. Rev. D 104, 124043 (2021b), arXiv:2103.14744 [gr-qc] .
- O. J. C. Dias, G. S. Hartnett, and J. E. Santos, “Quasinormal modes of asymptotically flat rotating black holes,” Class. Quant. Grav. 31, 245011 (2014), arXiv:1402.7047 [hep-th] .
- R. Monteiro, M. J. Perry, and J. E. Santos, “Semiclassical instabilities of Kerr-AdS black holes,” Phys. Rev. D 81, 024001 (2010a), arXiv:0905.2334 [gr-qc] .
- O. J. C. Dias, P. Figueras, R. Monteiro, J. E. Santos, and R. Emparan, “Instability and new phases of higher-dimensional rotating black holes,” Phys. Rev. D 80, 111701 (2009a), arXiv:0907.2248 [hep-th] .
- O. J. C. Dias, P. Figueras, R. Monteiro, H. S. Reall, and J. E. Santos, “An instability of higher-dimensional rotating black holes,” JHEP 05, 076 (2010a), arXiv:1001.4527 [hep-th] .
- J. E. Santos and B. Way, “Neutral Black Rings in Five Dimensions are Unstable,” Phys. Rev. Lett. 114, 221101 (2015), arXiv:1503.00721 [hep-th] .
- A. Maselli, S. Yi, L. Pierini, V. Vellucci, L. Reali, L. Gualtieri, and E. Berti, “Black hole spectroscopy beyond Kerr: agnostic and theory-based tests with next-generation interferometers,” (2023), arXiv:2311.14803 [gr-qc] .
- S. A. Teukolsky, “The Kerr Metric,” Class. Quant. Grav. 32, 124006 (2015), arXiv:1410.2130 [gr-qc] .
- E. Berti, “Black hole perturbation therory: lectures notes of ICTS Summer School,” (2016).
- D. Li, A. Hussain, P. Wagle, Y. Chen, N. Yunes, and A. Zimmerman, “Isospectrality breaking in the Teukolsky formalism,” (2023), arXiv:2310.06033 [gr-qc] .
- O. J. C. Dias, P. Figueras, R. Monteiro, H. S. Reall, and J. E. Santos, “An instability of higher-dimensional rotating black holes,” JHEP 05, 076 (2010b), arXiv:1001.4527 [hep-th] .
- E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, 2009).
- C. B. Owen, N. Yunes, and H. Witek, “Petrov type, principal null directions, and Killing tensors of slowly rotating black holes in quadratic gravity,” Phys. Rev. D 103, 124057 (2021), arXiv:2103.15891 [gr-qc] .
- A. Sullivan, N. Yunes, and T. P. Sotiriou, “Numerical black hole solutions in modified gravity theories: Spherical symmetry case,” Phys. Rev. D 101, 044024 (2020), arXiv:1903.02624 [gr-qc] .
- A. Sullivan, N. Yunes, and T. P. Sotiriou, “Numerical black hole solutions in modified gravity theories: Axial symmetry case,” Phys. Rev. D 103, 124058 (2021), arXiv:2009.10614 [gr-qc] .
- A. Maselli, P. Pani, L. Gualtieri, and V. Ferrari, “Rotating black holes in Einstein-Dilaton-Gauss-Bonnet gravity with finite coupling,” Phys. Rev. D 92, 083014 (2015), arXiv:1507.00680 [gr-qc] .
- D. P. O’Leary and B. W. Rust, “Variable projection for nonlinear least squares problems,” Comput. Optim. Appl. 54, 579–593 (2013).
- O. J. C. Dias, J. E. Santos, and B. Way, “Numerical Methods for Finding Stationary Gravitational Solutions,” Class. Quant. Grav. 33, 133001 (2016), arXiv:1510.02804 [hep-th] .
- https://github.com/pratikwagle/Quasinormal-modes-of-slowly-rotating-black-holes-in-dynamical-Chern-Simons-gravity.git.
- G. Carullo, G. Riemenschneider, K. W. Tsang, A. Nagar, and W. Del Pozzo, “GW150914 peak frequency: a novel consistency test of strong-field General Relativity,” Class. Quant. Grav. 36, 105009 (2019a), arXiv:1811.08744 [gr-qc] .
- G. Carullo, W. Del Pozzo, and J. Veitch, “Observational Black Hole Spectroscopy: A time-domain multimode analysis of GW150914,” Phys. Rev. D 99, 123029 (2019b), [Erratum: Phys.Rev.D 100, 089903 (2019)], arXiv:1902.07527 [gr-qc] .
- J. Boyd, Chebyshev and Fourier Spectral Methods: Second Revised Edition, Dover Books on Mathematics (Dover Publications, 2013).
- E. W. Leaver, “An analytic representation for the quasi normal modes of Kerr black holes,” Proc. Roy. Soc. Lond. A 402, 285–298 (1985).
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Properties of the Binary Black Hole Merger GW150914,” Phys. Rev. Lett. 116, 241102 (2016e), arXiv:1602.03840 [gr-qc] .
- L. S. Kegeles and J. M. Cohen, “Constructive procedure for perturbations of spacetimes,” Physical Review D 19, 1641–1664 (1979).
- P. L. Chrzanowski, “Vector potential and metric perturbations of a rotating black hole,” Phys. Rev. D 11, 2042–2062 (1975b).
- N. Loutrel, J. L. Ripley, E. Giorgi, and F. Pretorius, “Second-order perturbations of kerr black holes: Formalism and reconstruction of the first-order metric,” Phys. Rev. D 103, 104017 (2021).
- D. Li, P. Wagle, Y. Chen, and N. Yunes, “in preparation,” .
- M. Srivastava, Y. Chen, and S. Shankaranarayanan, “Analytical computation of quasinormal modes of slowly rotating black holes in dynamical Chern-Simons gravity,” Phys. Rev. D 104, 064034 (2021), arXiv:2106.06209 [gr-qc] .
- V. Cardoso and L. Gualtieri, “Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity,” Phys. Rev. D 80, 064008 (2009b), [Erratum: Phys.Rev.D 81, 089903 (2010)], arXiv:0907.5008 [gr-qc] .
- N. Yunes and C. F. Sopuerta, “Perturbations of Schwarzschild Black Holes in Chern-Simons Modified Gravity,” Phys. Rev. D 77, 064007 (2008), arXiv:0712.1028 [gr-qc] .
- J. L. Blázquez-Salcedo, F. S. Khoo, and J. Kunz, “Quasinormal modes of Einstein-Gauss-Bonnet-dilaton black holes,” Phys. Rev. D 96, 064008 (2017), arXiv:1706.03262 [gr-qc] .
- L. Pierini and L. Gualtieri, “Quasi-normal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: the first order in rotation,” Phys. Rev. D 103, 124017 (2021b), arXiv:2103.09870 [gr-qc] .
- L. Pierini and L. Gualtieri, “Quasi-normal modes of rotating black holes in Einstein-dilaton Gauss-Bonnet gravity: the second order in rotation,” (2022b), arXiv:2207.11267 [gr-qc] .
- P. Wagle, N. Yunes, and H. O. Silva, “Quasinormal modes of slowly-rotating black holes in dynamical Chern-Simons gravity,” Phys. Rev. D 105, 124003 (2022b), arXiv:2103.09913 [gr-qc] .
- S. R. Dolan, C. Kavanagh, and B. Wardell, “Gravitational Perturbations of Rotating Black Holes in Lorenz Gauge,” Phys. Rev. Lett. 128, 151101 (2022), arXiv:2108.06344 [gr-qc] .
- V. Cardoso, O. J. C. Dias, G. S. Hartnett, L. Lehner, and J. E. Santos, “Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS,” JHEP 04, 183 (2014b), arXiv:1312.5323 [hep-th] .
- O. J. C. Dias and J. E. Santos, “Boundary Conditions for Kerr-AdS Perturbations,” JHEP 10, 156 (2013), arXiv:1302.1580 [hep-th] .
- R. Monteiro, M. J. Perry, and J. E. Santos, “Semiclassical instabilities of Kerr-AdS black holes,” Phys. Rev. D 81, 024001 (2010b), arXiv:0905.2334 [gr-qc] .
- O. J. C. Dias, P. Figueras, R. Monteiro, J. E. Santos, and R. Emparan, “Instability and new phases of higher-dimensional rotating black holes,” Phys. Rev. D 80, 111701 (2009b), arXiv:0907.2248 [hep-th] .