Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Balanced and Deterministic Weight-sharing Helps Network Performance (2312.08401v1)

Published 13 Dec 2023 in cs.LG

Abstract: Weight-sharing plays a significant role in the success of many deep neural networks, by increasing memory efficiency and incorporating useful inductive priors about the problem into the network. But understanding how weight-sharing can be used effectively in general is a topic that has not been studied extensively. Chen et al. [2015] proposed HashedNets, which augments a multi-layer perceptron with a hash table, as a method for neural network compression. We generalize this method into a framework (ArbNets) that allows for efficient arbitrary weight-sharing, and use it to study the role of weight-sharing in neural networks. We show that common neural networks can be expressed as ArbNets with different hash functions. We also present two novel hash functions, the Dirichlet hash and the Neighborhood hash, and use them to demonstrate experimentally that balanced and deterministic weight-sharing helps with the performance of a neural network.

Summary

We haven't generated a summary for this paper yet.