Nonrelativistic nuclear reduction for tensor couplings in dark matter direct detection and $μ\to e$ conversion (2312.08339v3)
Abstract: The nonrelativistic effective field theory (NRET) is widely used in dark matter direct detection and charged-lepton flavor violation studies through $\mu \to e$ conversion. However, existing literature has not fully considered tensor couplings. This study fills this gap by utilizing an innovative tensor decomposition method, extending NRET to incorporate previously overlooked tensor interactions. This development is expected to have a significant impact on ongoing experiments seeking physics beyond the Standard Model and on our understanding of the new-physics interactions. Notably, we identify additional operators in $\mu \to e$ conversion that are absent in scalar and vector couplings. To support further research and experimental analyses, comprehensive tables featuring tensor matrix elements and their corresponding operators are provided.
- R. J. Gaitskell. Direct detection of dark matter. Ann. Rev. Nucl. Part. Sci., 54:315–359, 2004. doi: 10.1146/annurev.nucl.54.070103.181244.
- Particle dark matter: evidence, candidates and constraints. Phys. Rep., 405(5):279 – 390, 2005. ISSN 0370-1573. doi: https://doi.org/10.1016/j.physrep.2004.08.031.
- Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents. Phys. Rev. D, 88(8):083516, 2013. doi: 10.1103/PhysRevD.89.029901,10.1103/PhysRevD.88.083516. [Erratum: Phys. Rev.D, 89(2):029901(2014)].
- J. L. Feng. Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys., 48(1):495–545, 2010. doi: 10.1146/annurev-astro-082708-101659.
- Baudis. Direct dark matter detection: The next decade. Phys. of the Dark Universe, 1(1):94 – 108, 2012. ISSN 2212-6864. doi: https://doi.org/10.1016/j.dark.2012.10.006. Next Decade in Dark Matter and Dark Energy.
- Spin-dependent WIMP scattering off nuclei. Phys. Rev. D, 86:103511, 2012. doi: 10.1103/PhysRevD.86.103511.
- Chiral power counting of one- and two-body currents in direct detection of dark matter. Phys. Lett. B, 746:410–416, 2015. doi: 10.1016/j.physletb.2015.05.041.
- Wimp-nucleus scattering in chiral effective theory. J. High Energy Phys., 2012(10):25, Oct 2012. ISSN 1029-8479. doi: 10.1007/JHEP10(2012)025.
- The effective field theory of dark matter direct detection. J. Cosmol. Astropart. Phys., 2013(02):004, 2013. doi: 10.1088/1475-7516/2013/02/004.
- Ab initio nuclear response functions for dark matter searches. Phys. Rev. D, 95:103011, May 2017. doi: 10.1103/PhysRevD.95.103011.
- Weakly interacting massive particle-nucleus elastic scattering response. Phys. Rev. C, 89:065501, Jun 2014. doi: 10.1103/PhysRevC.89.065501.
- Analysis strategies for general spin-independent WIMP-nucleus scattering. Phys. Rev. D, 94:063505, Sep 2016. doi: 10.1103/PhysRevD.94.063505.
- A. Glick-Magid and D. Gazit. Multipole decomposition of tensor interactions of fermionic probes with composite particles and bsm signatures in nuclear reactions. Phys. Rev. D, 107(7):075031, 2023. doi: 10.1103/PhysRevD.107.075031.
- Nuclear-level effective theory of μ→e→𝜇𝑒\mu\rightarrow eitalic_μ → italic_e conversion: Formalism and applications. Phys. Rev. C, 107:035504, Mar 2023. doi: 10.1103/PhysRevC.107.035504.
- Improved limits on lepton-flavor-violating decays of light pseudoscalars via spin-dependent μ→e→𝜇𝑒\mu\rightarrow eitalic_μ → italic_e conversion in nuclei. Phys. Rev. Lett., 130:131902, Mar 2023. doi: 10.1103/PhysRevLett.130.131902.
- Steven Weinberg. Charge symmetry of weak interactions. Phys. Rev., 112:1375–1379, Nov 1958. doi: 10.1103/PhysRev.112.1375.
- Beta decays and non-standard interactions in the LHC era. Prog. Part. Nucl. Phys., 71:93–118, 2013. doi: 10.1016/j.ppnp.2013.03.005.
- Non-perturbative effects in μ→eγ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ. Journal of High Energy Physics, 2019(1):1–21, 2019. doi: 10.1007/JHEP01(2019)088.
- Nuclear-level effective theory of μ→e→𝜇𝑒\mu\rightarrow eitalic_μ → italic_e conversion. Phys. Rev. Lett., 130:131901, Mar 2023. doi: 10.1103/PhysRevLett.130.131901.
- Effective lagrangian analysis of new interactions and flavour conservation. Nuclear Physics B, 268(3-4):621–653, 1986. doi: 10.1016/0550-3213(86)90262-2.
- Dimension-six terms in the standard model lagrangian. Journal of High Energy Physics, 2010(10):1–18, 2010. doi: 10.1007/JHEP10(2010)085.