Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hybrid analysis of LBSN data to early detect anomalies in crowd dynamics (2312.08092v1)

Published 13 Dec 2023 in cs.SI and cs.AI

Abstract: Undoubtedly, Location-based Social Networks (LBSNs) provide an interesting source of geo-located data that we have previously used to obtain patterns of the dynamics of crowds throughout urban areas. According to our previous results, activity in LBSNs reflects the real activity in the city. Therefore, unexpected behaviors in the social media activity are a trustful evidence of unexpected changes of the activity in the city. In this paper we introduce a hybrid solution to early detect these changes based on applying a combination of two approaches, the use of entropy analysis and clustering techniques, on the data gathered from LBSNs. In particular, we have performed our experiments over a data set collected from Instagram for seven months in New York City, obtaining promising results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. D. R. Domínguez, R. P. D. Redondo, A. F. Vilas, and M. B. Khalifa, “Sensing the city with instagram: Clustering geolocated data for outlier detection,” Expert Systems with Applications, 2017.
  2. W. Ge, R. T. Collins, and R. B. Ruback, “Vision-based analysis of small groups in pedestrian crowds,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 5, pp. 1003–1016, 2012.
  3. Z. Wu, N. Fuller, D. Theriault, and M. Betke, “A thermal infrared video benchmark for visual analysis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 201–208, 2014.
  4. F. Santoro, S. Pedro, Z.-H. Tan, and T. B. Moeslund, “Crowd analysis by using optical flow and density based clustering,” in Signal Processing Conference, 2010 18th European, pp. 269–273, IEEE, 2010.
  5. R. Hamid, A. Johnson, S. Batta, A. Bobick, C. Isbell, and G. Coleman, “Detection and explanation of anomalous activities: Representing activities as bags of event n-grams,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1, pp. 1031–1038, IEEE, 2005.
  6. J. Xu, S. Denman, C. Fookes, and S. Sridharan, “Detecting rare events using kullback–leibler divergence: A weakly supervised approach,” Expert Systems with Applications, vol. 54, pp. 13–28, 2016.
  7. M. Chen, X. Yu, and Y. Liu, “Mining moving patterns for predicting next location,” Information Systems, vol. 54, pp. 156 – 168, 2015.
  8. R. Trasarti, R. Guidotti, A. Monreale, and F. Giannotti, “Myway: Location prediction via mobility profiling,” Information Systems, vol. 64, pp. 350 – 367, 2017.
  9. T. Shelton, A. Poorthuis, and M. Zook, “Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information,” Landscape and urban planning, vol. 142, pp. 198–211, 2015.
  10. H. Taubenböck, J. Staab, X. Zhu, C. Geiß, S. Dech, and M. Wurm, “Are the poor digitally left behind? indications of urban divides based on remote sensing and twitter data,” ISPRS International Journal of Geo-Information, vol. 7, no. 8, p. 304, 2018.
  11. G. Cao, S. Wang, M. Hwang, A. Padmanabhan, Z. Zhang, and K. Soltani, “A scalable framework for spatiotemporal analysis of location-based social media data,” Computers, Environment and Urban Systems, vol. 51, pp. 70–82, 2015.
  12. İ. Arın, M. K. Erpam, and Y. Saygın, “I-twec: Interactive clustering tool for twitter,” Expert Systems with Applications, vol. 96, pp. 1–13, 2018.
  13. A. Weiler, M. Grossniklaus, and M. H. Scholl, “An evaluation of the run-time and task-based performance of event detection techniques for twitter,” Information Systems, vol. 62, pp. 207–219, 2016.
  14. X. Zhou and L. Chen, “Event detection over twitter social media streams,” The VLDB Journal, vol. 23, pp. 381–400, June 2014.
  15. L. Ferrari, A. Rosi, M. Mamei, and F. Zambonelli, “Extracting urban patterns from location-based social networks,” in Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pp. 9–16, ACM, 2011.
  16. J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and T. Ertl, “Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition,” in Visual Analytics Science and Technology (VAST), 2012 IEEE Conference on, pp. 143–152, IEEE, 2012.
  17. K. Watanabe, M. Ochi, M. Okabe, and R. Onai, “Jasmine: a real-time local-event detection system based on geolocation information propagated to microblogs,” in Proceedings of the 20th ACM international conference on Information and knowledge management, pp. 2541–2544, ACM, 2011.
  18. M. Walther and M. Kaisser, “Geo-spatial event detection in the twitter stream,” in European Conference on Information Retrieval, pp. 356–367, Springer, 2013.
  19. S. B. Ranneries, M. E. Kalør, S. A. Nielsen, L. N. Dalgaard, L. D. Christensen, and N. Kanhabua, “Wisdom of the local crowd: detecting local events using social media data,” in Proceedings of the 8th ACM Conference on Web Science, pp. 352–354, ACM, 2016.
  20. R. Lee and K. Sumiya, “Measuring geographical regularities of crowd behaviors for twitter-based geo-social event detection,” in Proceedings of the 2nd ACM SIGSPATIAL international workshop on location based social networks, pp. 1–10, ACM, 2010.
  21. C.-H. Lee, “Mining spatio-temporal information on microblogging streams using a density-based online clustering method,” Expert Systems with Applications, vol. 39, no. 10, pp. 9623–9641, 2012.
  22. P. Arcaini, G. Bordogna, D. Ienco, and S. Sterlacchini, “User-driven geo-temporal density-based exploration of periodic and not periodic events reported in social networks,” Information Sciences, vol. 340, pp. 122–143, 2016.
  23. M. Hasan, M. A. Orgun, and R. Schwitter, “A survey on real-time event detection from the twitter data stream,” Journal of Information Science, p. 0165551517698564, 2017.
  24. S. Wan, J. Lu, P. Fan, and K. B. Letaief, “Minor probability events? detection in big data: An integrated approach with bayes detection and mim,” IEEE Communications Letters, vol. 23, no. 3, pp. 418–421, 2019.
  25. S. Petrović, M. Osborne, and V. Lavrenko, “Streaming first story detection with application to twitter,” in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 181–189, Association for Computational Linguistics, 2010.
  26. W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang, “Topicsketch: Real-time bursty topic detection from twitter,” IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 8, pp. 2216–2229, 2016.
  27. A. G. Nikolaev, R. Razib, and A. Kucheriya, “On efficient use of entropy centrality for social network analysis and community detection,” Social Networks, vol. 40, pp. 154–162, 2015.
  28. W. Yang, G. Wang, M. Z. A. Bhuiyan, and K.-K. R. Choo, “Hypergraph partitioning for social networks based on information entropy modularity,” Journal of Network and Computer Applications, vol. 86, pp. 59–71, 2017.
  29. P. Yuan, H. Ma, and H. Fu, “Hotspot-entropy based data forwarding in opportunistic social networks,” Pervasive and Mobile Computing, vol. 16, pp. 136–154, 2015.
  30. A. Rodriguez-Carrion, D. Rebollo-Monedero, J. Forné, C. Campo, C. Garcia-Rubio, J. Parra-Arnau, and S. K. Das, “Entropy-based privacy against profiling of user mobility,” Entropy, vol. 17, no. 6, pp. 3913–3946, 2015.
  31. C. Garcia-Rubio, R. P. Díaz Redondo, C. Campo, and A. Fernández Vilas, “Using entropy of social media location data for the detection of crowd dynamics anomalies,” Electronics, vol. 7, 12, 2018.
  32. P. Cudré-Mauroux, A. Budura, M. Hauswirth, and K. Aberer, “Picshark: mitigating metadata scarcity through large-scale p2p collaboration,” The VLDB Journal, vol. 17, pp. 1371–1384, Nov 2008.
  33. Elsevier, 2011.
  34. K. NafeesAhmed and T. Abdul Razak, “A comparative study of different density based spatial clustering algorithms,” International Journal of Computer Applications, vol. 99, no. 8, pp. 18–25, 2014.
  35. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96, pp. 226–231, 1996.
  36. P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–65, 1987.
  37. Y. Gao, I. Kontoyiannis, and E. Bienenstock, “Estimating the entropy of binary time series: methodology, some theory and a simulation study,” Entropy, vol. 10, no. 2, pp. 71–99, 2008.
  38. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, second ed., 2006.
  39. C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
  40. P. Grassberger, “Estimating the information content of symbol sequences and efficient codes,” IEEE Transactions on Information Theory, vol. 35, no. 3, pp. 669–675, 1989.
  41. I. Kontoyiannis, P. H. Algoet, Y. M. Suhov, and A. J. Wyner, “Nonparametric entropy estimation for stationary processes and random fields, with applications to english text,” IEEE Transactions on Information Theory, vol. 44, no. 3, pp. 1319–1327, 1998.
  42. M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding individual human mobility patterns,” Nature, vol. 453, pp. 779–782, June 2008.
  43. J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi, “The complexity of estimating rényi entropy,” in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1855–1869, 2015.
  44. A. Rodriguez-Carrion, C. Garcia-Rubio, C. Campo, and S. K. Das, “Analysis of a fast lz-based entropy estimator for mobility data,” in Proceedings of the 2015 IEEE International Conference Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 451–456, IEEE, 2015.
  45. H. Cerezo-Costas, A. Fernández-Vilas, M. Martín-Vicente, and R. P. Díaz-Redondo, “Discovering geo-dependent stories by combining density-based clustering and thread-based aggregation techniques,” Expert Systems with Applications, vol. 95, pp. 32–42, 2018.
Citations (11)

Summary

We haven't generated a summary for this paper yet.