Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secure Deep Reinforcement Learning for Dynamic Resource Allocation in Wireless MEC Networks (2312.08016v1)

Published 13 Dec 2023 in cs.LG and cs.NI

Abstract: This paper proposes a blockchain-secured deep reinforcement learning (BC-DRL) optimization framework for {data management and} resource allocation in decentralized {wireless mobile edge computing (MEC)} networks. In our framework, {we design a low-latency reputation-based proof-of-stake (RPoS) consensus protocol to select highly reliable blockchain-enabled BSs to securely store MEC user requests and prevent data tampering attacks.} {We formulate the MEC resource allocation optimization as a constrained Markov decision process that balances minimum processing latency and denial-of-service (DoS) probability}. {We use the MEC aggregated features as the DRL input to significantly reduce the high-dimensionality input of the remaining service processing time for individual MEC requests. Our designed constrained DRL effectively attains the optimal resource allocations that are adapted to the dynamic DoS requirements. We provide extensive simulation results and analysis to} validate that our BC-DRL framework achieves higher security, reliability, and resource utilization efficiency than benchmark blockchain consensus protocols and {MEC} resource allocation algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Y. Lin, H. Du, D. Niyato, J. Nie, J. Zhang, Y. Cheng, and Z. Yang, “Blockchain-aided secure semantic communication for AI-generated content in Metaverse,” IEEE Open J. Comput. Soc., vol. 4, pp. 72–83, 2023.
  2. Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, “Blockchain and machine learning for communications and networking systems,” IEEE Commun. Surv. Tutorials, vol. 22, no. 2, pp. 1392–1431, Q2 2020.
  3. H. Zhang, R. Wang, W. Sun, and H. Zhao, “Mobility management for blockchain-based ultra-dense edge computing: A deep reinforcement learning approach,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7346–7359, Nov. 2021.
  4. S. Nakamoto. (2008). Bitcoin: A peer-to-peer electronic cash system. [Online]. Available: http://bitcoin.org/bitcoin.pdf
  5. S. R. Pokhrel and J. Choi, “Federated learning with blockchain for autonomous vehicles: Analysis and design challenges,” IEEE Trans. Commun., vol. 68, no. 8, pp. 4734–4746, Aug. 2020.
  6. X. Ling, Y. Le, J. Wang, Z. Ding, and X. Gao, “Practical modeling and analysis of blockchain radio access network,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1021-1037, Feb. 2021.
  7. Z. Xiong, J. Kang, D. Niyato, P. Wang, and H. V. Poor, “Cloud/Edge computing service management in blockchain networks: Multi-leader multi-follower game-based ADMM for pricing,” IEEE Trans. Serv. Comput., vol. 13, no. 2, pp. 356–367, 1 Mar.-Apr. 2020.
  8. M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proc. USENIX Symp. Oper. Syst. Design Implement., vol. 99, 1999, pp. 173–186.
  9. F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical survey on decentralized digital currencies,” IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 2084–2123, thirdquarter 2016.
  10. Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung, “Blockchain-based decentralized trust management in vehicular networks,” IEEE Internet Things J., vol. 6, no. 2, pp. 1495–1505, Apr. 2019.
  11. L. Xiao, Y. Ding, D. Jiang, J. Huang, D. Wang, J. Li, and H. V. Poor, “A reinforcement learning and blockchain-based trust mechanism for edge networks,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5460–5470, Sep. 2020.
  12. X. Hao, P. L. Yeoh, Z. Ji, Y. Yu, B. Vucetic, and Y. Li, “Stochastic analysis of double blockchain architecture in IoT communication networks,” IEEE Internet Things J., vol. 9, no. 12, pp. 9700–9711, Jun. 15, 2022.
  13. J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, “Toward secure blockchain-enabled internet of vehicles: Optimizing consensus management using reputation and contract theory,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2906–2920, Mar. 2019.
  14. A. Asheralieva and D. Niyato, “Reputation-based coalition formation for secure self-organized and scalable sharding in IoT blockchains with mobile-edge computing,” IEEE Internet Things J., vol. 7, no. 12, pp. 11830–11850, Dec. 2020.
  15. A. Zappone, M. Di Renzom, and M. Debbah, “Wireless networks design in the era of deep learning: Model-based, AI-based, or both?,” IEEE Trans. Commun., vol. 67, no. 10, pp. 7331-7376, Oct. 2019.
  16. Z. Chen, B. Yin, H. Zhu, Y. Li, M. Tao, and W. Zhang, “Mobile communications, computing, and caching resources allocation for diverse services via multi-objective proximal policy optimization,” IEEE Trans. Commun., vol. 70, no. 7, pp. 4498–4512, Jul. 2022.
  17. F. Tang, B. Mao, N. Kato, and G. Gui, “Comprehensive survey on machine learning in vehicular network: Technology, applications and challenges,” IEEE Commun. Surv. Tutorials, vol. 23, no. 3, pp. 2027–2057, Q3 2021.
  18. C. R. Taylor, “Dynamic programming and the curses of dimensionality” in Applications of dynamic programming to agricultural decision problems, 1st ed. Boca Raton, USA: CRC Press, 1994.
  19. C. Wang, D. Deng, L. Xu, and W. Wang, “Resource scheduling based on deep reinforcement learning in UAV assisted emergency communication networks,” IEEE Trans. Commun., vol. 70, no. 6, pp. 3834–3848, Jun. 2022.
  20. J. Wang, Y. Wang, P. Cheng, K. Yu, and W. Xiang, “DDPG-based joint resource management for latency minimization in NOMA-MEC networks,” IEEE Commun. Lett., vol. 27, no. 7, pp. 1814–1818, Jul. 2023.
  21. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE J. Sel. Top. Signal Process., vol. 17, no. 1, pp. 9–39, Jan. 2023.
  22. J. Feng, F. R. Yu, Q. Pei, J. Du, and L. Zhu, “Joint optimization of radio and computational resources allocation in blockchain-enabled mobile edge computing systems,” IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 4321–4334, Jun. 2020.
  23. Y. Zuo, S. Jin, S. Zhang, Y. Han, and K. -K. Wong, “Delay-limited computation offloading for MEC-assisted mobile blockchain networks,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8569-8584, Dec. 2021.
  24. F. Guo, F. R. Yu, H. Zhang, H. Ji, M. Liu, and V. C. M. Leung, “Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 1689–1703, Mar. 2020.
  25. Q. Liang, F. Que, and E. Modiano, “Accelerated primal-dual policy optimization for safe reinforcement learning,” 2018, arXiv:1802.06480.
  26. S. Li, C. She, Y. Li and B. Vucetic, “Constrained deep reinforcement learning for low-latency wireless VR video streaming,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Madrid, Spain, 2021, pp. 01–06.
  27. R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, “Deep learning for hybrid 5G services in mobile edge computing systems: Learn from a digital twin,” IEEE Trans. Wireless Commun., vol. 18, no. 10, pp. 4692–4707, Oct. 2019.
  28. K. Shuai, Y. Miao, K. Hwang, and Z. Li, “Transfer reinforcement learning for adaptive task offloading over distributed edge clouds,” IEEE Trans. Cloud Comput., vol. 11, no. 2, pp. 2175–2187, Apr.–Jun. 2023.
  29. E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on bitcoin’s peer-to-peer network,” in Proc. USENIX Security Symp., Washington, D. C., USA, Aug. 2015, pp. 129–144.
  30. M. Raya, P. Papadimitratos, V. D. Gligor, and J. -. Hubaux, “On data-centric trust establishment in ephemeral Ad Hoc networks,” in Proc. IEEE 27th Conf. Comput. Commun. (INFOCOM’08), Phoenix, AZ, USA, Apr. 2008, pp. 1238–1246.
  31. X. Hao, P. L. Yeoh, T. Wu, Y. Yu, Y. Li, and B. Vucetic, “Scalable double blockchain architecture for IoT information and reputation management,” in Proc. IEEE World Forum Internet Things (WF-IoT), New Orleans, LA, USA, 2021, pp. 171–176.
  32. S. Malik, V. Dedeoglu, S. S. Kanhere, and R. Jurdak, “TrustChain: Trust management in blockchain and IoT supported supply chains,” in Proc. IEEE Int. Conf. Blockchain (Blockchain), USA, pp. 184–193, 2019.
  33. C. Sun, J. Wang, X. Gao, Z. Ding, and X. Zheng, “Fiber-enabled optical wireless communications with full beam coverage,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3207–3221, May 2021.
Citations (4)

Summary

We haven't generated a summary for this paper yet.