Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pneumonia Detection on chest X-ray images Using Ensemble of Deep Convolutional Neural Networks (2312.07965v1)

Published 13 Dec 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Pneumonia is a life-threatening lung infection resulting from several different viral infections. Identifying and treating pneumonia on chest X-ray images can be difficult due to its similarity to other pulmonary diseases. Thus, the existing methods for predicting pneumonia cannot attain substantial levels of accuracy. Therefore, this paper presents a computer-aided classification of pneumonia, coined as Ensemble Learning (EL), to simplify the diagnosis process on chest X-ray images. Our proposal is based on Convolutional Neural Network (CNN) models, which are pre-trained CNN models that have been recently employed to enhance the performance of many medical tasks instead of training CNN models from scratch. We propose to use three well-known CNN pre-trained (DenseNet169, MobileNetV2 and Vision Transformer) using the ImageNet database. Then, these models are trained on the chest X-ray data set using fine-tuning. Finally, the results are obtained by combining the extracted features from these three models during the experimental phase. The proposed EL approach outperforms other existing state-of-the-art methods, and it obtains an accuracy of 93.91% and a F1-Score of 93.88% on the testing phase.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. C. Ortiz-Toro, A. García-Pedrero, M. Lillo-Saavedra, and C. Gonzalo-Martín, “Automatic pneumonia detection in chest x-ray images using textural features,” Computers in biology and medicine, p. 105466, 2022.
  2. S. Ben Atitallah, M. Driss, W. Boulila, A. Koubaa, and H. Ben Ghezala, “Fusion of convolutional neural networks based on dempster–shafer theory for automatic pneumonia detection from chest x-ray images,” International Journal of Imaging Systems and Technology, vol. 32, no. 2, pp. 658–672, 2022.
  3. L. Wang, H. Wang, Y. Huang, B. Yan, Z. Chang, Z. Liu, M. Zhao, L. Cui, J. Song, and F. Li, “Trends in the application of deep learning networks in medical image analysis: Evolution between 2012 and 2020,” European Journal of Radiology, vol. 146, p. 110069, 2022.
  4. A. Singhal, M. Phogat, D. Kumar, A. Kumar, M. Dahiya, and V. K. Shrivastava, “Study of deep learning techniques for medical image analysis: A review,” Materials Today: Proceedings, 2022.
  5. M. Iori, C. Di Castelnuovo, L. Verzellesi, G. Meglioli, D. G. Lippolis, A. Nitrosi, F. Monelli, G. Besutti, V. Trojani, M. Bertolini, et al., “Mortality prediction of covid-19 patients using radiomic and neural network features extracted from a wide chest x-ray sample size: A robust approach for different medical imbalanced scenarios,” Applied Sciences, vol. 12, no. 8, p. 3903, 2022.
  6. Z. Salahuddin, H. C. Woodruff, A. Chatterjee, and P. Lambin, “Transparency of deep neural networks for medical image analysis: A review of interpretability methods,” Computers in biology and medicine, vol. 140, p. 105111, 2022.
  7. S. P. Kale, J. Patil, A. Kshirsagar, and V. Bendre, “Early lungs tuberculosis detection using deep learning,” in Intelligent Sustainable Systems, pp. 287–294, Springer, 2022.
  8. S. Bellens, G. M. Probst, M. Janssens, P. Vandewalle, and W. Dewulf, “Evaluating conventional and deep learning segmentation for fast x-ray ct porosity measurements of polymer laser sintered am parts,” Polymer Testing, vol. 110, p. 107540, 2022.
  9. L. Zhang and R. Mueller, “Large-scale recognition of natural landmarks with deep learning based on biomimetic sonar echoes,” Bioinspiration & Biomimetics, 2022.
  10. T. Le Dinh, S.-H. Lee, S.-G. Kwon, and K.-R. Kwon, “Covid-19 chest x-ray classification and severity assessment using convolutional and transformer neural networks,” Applied Sciences, vol. 12, no. 10, p. 4861, 2022.
  11. A. R. Sajun, I. Zualkernan, and D. Sankalpa, “Investigating the performance of fixmatch for covid-19 detection in chest x-rays,” Applied Sciences, vol. 12, no. 9, p. 4694, 2022.
  12. A. Furtado, L. Andrade, D. Frias, T. Maia, R. Badaró, and E. G. S. Nascimento, “Deep learning applied to chest radiograph classification—a covid-19 pneumonia experience,” Applied Sciences, vol. 12, no. 8, p. 3712, 2022.
  13. P. Malhotra, S. Gupta, D. Koundal, A. Zaguia, M. Kaur, and H.-N. Lee, “Deep learning-based computer-aided pneumothorax detection using chest x-ray images,” Sensors, vol. 22, no. 6, p. 2278, 2022.
  14. M. Abd Elaziz, A. Mabrouk, A. Dahou, and S. A. Chelloug, “Medical image classification utilizing ensemble learning and levy flight-based honey badger algorithm on 6g-enabled internet of things,” Computational Intelligence and Neuroscience, vol. 2022, 2022.
  15. H. Adel, A. Dahou, A. Mabrouk, M. Abd Elaziz, M. Kayed, I. M. El-Henawy, S. Alshathri, and A. Amin Ali, “Improving crisis events detection using distilbert with hunger games search algorithm,” Mathematics, vol. 10, no. 3, p. 447, 2022.
  16. S. Niu, M. Liu, Y. Liu, J. Wang, and H. Song, “Distant domain transfer learning for medical imaging,” IEEE Journal of Biomedical and Health Informatics, 2021.
  17. H.-C. Lee and A. F. Aqil, “Combination of transfer learning methods for kidney glomeruli image classification,” Applied Sciences, vol. 12, no. 3, p. 1040, 2022.
  18. A. Mabrouk, R. P. D. Redondo, and M. Kayed, “Seopinion: Summarization and exploration of opinion from e-commerce websites,” Sensors, vol. 21, no. 2, p. 636, 2021.
  19. G. Chandrasekaran, N. Antoanela, G. Andrei, C. Monica, and J. Hemanth, “Visual sentiment analysis using deep learning models with social media data,” Applied Sciences, vol. 12, no. 3, p. 1030, 2022.
  20. A. Mabrouk, R. P. D. Redondo, and M. Kayed, “Deep learning-based sentiment classification: A comparative survey,” IEEE Access, vol. 8, pp. 85616–85638, 2020.
  21. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
  22. F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer, “Densenet: Implementing efficient convnet descriptor pyramids,” arXiv preprint arXiv:1404.1869, 2014.
  23. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  24. G. Maselli, E. Bertamino, C. Capalbo, R. Mancini, G. Orsi, C. Napoli, and C. Napoli, “Hierarchical convolutional models for automatic pneu-monia diagnosis based on x-ray images: New strategies in public health,” Ann. Ig, vol. 33, pp. 644–655, 2021.
  25. K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, et al., “A survey on vision transformer,” IEEE transactions on pattern analysis and machine intelligence, 2022.
  26. E. Ayan, B. Karabulut, and H. M. Ünver, “Diagnosis of pediatric pneumonia with ensemble of deep convolutional neural networks in chest x-ray images,” Arabian Journal for Science and Engineering, pp. 1–17, 2021.
  27. P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning,” arXiv preprint arXiv:1711.05225, 2017.
  28. O. Stephen, M. Sain, U. J. Maduh, and D.-U. Jeong, “An efficient deep learning approach to pneumonia classification in healthcare,” Journal of healthcare engineering, vol. 2019, 2019.
  29. H. Wu, P. Xie, H. Zhang, D. Li, and M. Cheng, “Predict pneumonia with chest x-ray images based on convolutional deep neural learning networks,” Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 2893–2907, 2020.
  30. V. Cheplygina, M. de Bruijne, and J. P. Pluim, “Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis,” Medical image analysis, vol. 54, pp. 280–296, 2019.
  31. E. Ayan and H. M. Ünver, “Diagnosis of pneumonia from chest x-ray images using deep learning,” in 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), pp. 1–5, Ieee, 2019.
  32. V. Chouhan, S. K. Singh, A. Khamparia, D. Gupta, P. Tiwari, C. Moreira, R. Damaševičius, and V. H. C. De Albuquerque, “A novel transfer learning based approach for pneumonia detection in chest x-ray images,” Applied Sciences, vol. 10, no. 2, p. 559, 2020.
  33. T. Rahman, M. E. Chowdhury, A. Khandakar, K. R. Islam, K. F. Islam, Z. B. Mahbub, M. A. Kadir, and S. Kashem, “Transfer learning with deep convolutional neural network (cnn) for pneumonia detection using chest x-ray,” Applied Sciences, vol. 10, no. 9, p. 3233, 2020.
  34. M. Toğaçar, B. Ergen, Z. Cömert, and F. Özyurt, “A deep feature learning model for pneumonia detection applying a combination of mrmr feature selection and machine learning models,” Irbm, vol. 41, no. 4, pp. 212–222, 2020.
  35. A. Mittal, D. Kumar, M. Mittal, T. Saba, I. Abunadi, A. Rehman, and S. Roy, “Detecting pneumonia using convolutions and dynamic capsule routing for chest x-ray images,” Sensors, vol. 20, no. 4, p. 1068, 2020.
  36. G. Liang and L. Zheng, “A transfer learning method with deep residual network for pediatric pneumonia diagnosis,” Computer methods and programs in biomedicine, vol. 187, p. 104964, 2020.
  37. Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and J. Feng, “Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3435–3444, 2019.
  38. P. Li, Y. Yang, R. Grosu, G. Wang, R. Li, Y. Wu, and Z. Huang, “Driver distraction detection using octave-like convolutional neural network,” IEEE Transactions on Intelligent Transportation Systems, 2021.
  39. R. B. das Neves, L. F. Verçosa, D. Macêdo, B. L. D. Bezerra, and C. Zanchettin, “A fast fully octave convolutional neural network for document image segmentation,” in 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–6, IEEE, 2020.
  40. B. Wang, J. Yang, J. Ai, N. Luo, L. An, H. Feng, B. Yang, and Z. You, “Accurate tumor segmentation via octave convolution neural network,” Frontiers in Medicine, vol. 8, p. 501, 2021.
  41. R. Mahmoudi, N. Benameur, R. Mabrouk, M. A. Mohammed, B. Garcia-Zapirain, and M. H. Bedoui, “A deep learning-based diagnosis system for covid-19 detection and pneumonia screening using ct imaging,” Applied Sciences, vol. 12, no. 10, p. 4825, 2022.
  42. P.-Y. Chen, X.-H. Zhang, J.-X. Wu, C.-C. Pai, J.-C. Hsu, C.-H. Lin, and N.-S. Pai, “Automatic breast tumor screening of mammographic images with optimal convolutional neural network,” Applied Sciences, vol. 12, no. 8, p. 4079, 2022.
  43. D. S. Kermany, M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, et al., “Identifying medical diagnoses and treatable diseases by image-based deep learning,” Cell, vol. 172, no. 5, pp. 1122–1131, 2018.
  44. S. Rajaraman, S. Candemir, I. Kim, G. Thoma, and S. Antani, “Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs,” Applied Sciences, vol. 8, no. 10, p. 1715, 2018.
  45. R. Ali, J. H. Chuah, M. S. A. Talip, N. Mokhtar, and M. A. Shoaib, “Structural crack detection using deep convolutional neural networks,” Automation in Construction, vol. 133, p. 103989, 2022.
  46. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.
  47. Z. Rahman, M. S. Hossain, M. R. Islam, M. M. Hasan, and R. A. Hridhee, “An approach for multiclass skin lesion classification based on ensemble learning,” Informatics in Medicine Unlocked, vol. 25, p. 100659, 2021.
  48. K. D. Gupta, D. K. Sharma, S. Ahmed, H. Gupta, D. Gupta, and C.-H. Hsu, “A novel lightweight deep learning-based histopathological image classification model for iomt,” Neural Processing Letters, pp. 1–24, 2021.
  49. S. H. Kassani, P. H. Kassani, M. J. Wesolowski, K. A. Schneider, and R. Deters, “Classification of histopathological biopsy images using ensemble of deep learning networks,” arXiv preprint arXiv:1909.11870, 2019.
  50. Y. Li, K. Zhang, J. Cao, R. Timofte, and L. Van Gool, “Localvit: Bringing locality to vision transformers,” arXiv preprint arXiv:2104.05707, 2021.
  51. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
  52. E. Pérez and S. Ventura, “An ensemble-based convolutional neural network model powered by a genetic algorithm for melanoma diagnosis,” Neural Computing and Applications, pp. 1–20, 2021.
  53. A. Madani, M. Moradi, A. Karargyris, and T. Syeda-Mahmood, “Chest x-ray generation and data augmentation for cardiovascular abnormality classification,” in Medical Imaging 2018: Image Processing, vol. 10574, p. 105741M, International Society for Optics and Photonics, 2018.
  54. M. Salehi, R. Mohammadi, H. Ghaffari, N. Sadighi, and R. Reiazi, “Automated detection of pneumonia cases using deep transfer learning with paediatric chest x-ray images,” The British Journal of Radiology, vol. 94, no. 1121, p. 20201263, 2021.
Citations (70)

Summary

We haven't generated a summary for this paper yet.