Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Real World Stereo Image Super-Resolution via Hybrid Degradation Model and Discriminator for Implied Stereo Image Information (2312.07934v1)

Published 13 Dec 2023 in eess.IV and cs.CV

Abstract: Real-world stereo image super-resolution has a significant influence on enhancing the performance of computer vision systems. Although existing methods for single-image super-resolution can be applied to improve stereo images, these methods often introduce notable modifications to the inherent disparity, resulting in a loss in the consistency of disparity between the original and the enhanced stereo images. To overcome this limitation, this paper proposes a novel approach that integrates a implicit stereo information discriminator and a hybrid degradation model. This combination ensures effective enhancement while preserving disparity consistency. The proposed method bridges the gap between the complex degradations in real-world stereo domain and the simpler degradations in real-world single-image super-resolution domain. Our results demonstrate impressive performance on synthetic and real datasets, enhancing visual perception while maintaining disparity consistency. The complete code is available at the following \href{https://github.com/fzuzyb/SCGLANet}{link}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. X. Ji, Y. Cao, Y. Tai, C. Wang, J. Li, and F. Huang, “Real-world super-resolution via kernel estimation and noise injection,” in proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 466–467, 2020.
  2. K. Zhang, J. Liang, L. Van Gool, and R. Timofte, “Designing a practical degradation model for deep blind image super-resolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4791–4800, 2021.
  3. J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “Swinir: Image restoration using swin transformer,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844, 2021.
  4. X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-esrgan: Training real-world blind super-resolution with pure synthetic data,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1905–1914, 2021.
  5. Z. Luo, Y. Huang, S. Li, L. Wang, and T. Tan, “Learning the degradation distribution for blind image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6063–6072, 2022.
  6. J. Liang, H. Zeng, and L. Zhang, “Efficient and degradation-adaptive network for real-world image super-resolution,” in Proceedings of the European Conference on Computer Vision, pp. 574–591, 2022.
  7. C. Mou, Y. Wu, X. Wang, C. Dong, J. Zhang, and Y. Shan, “Metric learning based interactive modulation for real-world super-resolution,” in Proceedings of the European Conference on Computer Vision, pp. 723–740, 2022.
  8. R. K. Cosner, I. D. J. Rodriguez, T. G. Molnar, W. Ubellacker, Y. Yue, A. D. Ames, and K. L. Bouman, “Self-supervised online learning for safety-critical control using stereo vision,” in Proceedings of the IEEE Conference International Conference on Robotics and Automation, pp. 11487–11493, 2022.
  9. W. Chuah, R. Tennakoon, R. Hoseinnezhad, D. Suter, and A. Bab-Hadiashar, “Semantic guided long range stereo depth estimation for safer autonomous vehicle applications,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18916–18926, 2022.
  10. B. Krajancich, P. Kellnhofer, and G. Wetzstein, “Optimizing depth perception in virtual and augmented reality through gaze-contingent stereo rendering,” ACM Transactions on Graphics, vol. 39, no. 6, pp. 1–10, 2020.
  11. L. Wang, Y. Wang, Z. Liang, Z. Lin, J. Yang, W. An, and Y. Guo, “Learning parallax attention for stereo image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12250–12259, 2019.
  12. X. Ying, Y. Wang, L. Wang, W. Sheng, W. An, and Y. Guo, “A stereo attention module for stereo image super-resolution,” IEEE Signal Processing Letters, vol. 27, pp. 496–500, 2020.
  13. W. Song, S. Choi, S. Jeong, and K. Sohn, “Stereoscopic image super-resolution with stereo consistent feature,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12031–12038, 2020.
  14. Y. Wang, X. Ying, L. Wang, J. Yang, W. An, and Y. Guo, “Symmetric parallax attention for stereo image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 766–775, 2021.
  15. X. Zhu, K. Guo, H. Fang, L. Chen, S. Ren, and B. Hu, “Cross view capture for stereo image super-resolution,” IEEE Transactions on Multimedia, vol. 24, pp. 3074–3086, 2021.
  16. C. Chen, C. Qing, X. Xu, and P. Dickinson, “Cross parallax attention network for stereo image super-resolution,” IEEE Transactions on Multimedia, vol. 24, pp. 202–216, 2022.
  17. X. Chu, L. Chen, and W. Yu, “Nafssr: stereo image super-resolution using nafnet,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1239–1248, 2022.
  18. Z. He, Z. Jin, and Y. Zhao, “Srdrl: A blind super-resolution framework with degradation reconstruction loss,” IEEE Transactions on Multimedia, vol. 24, pp. 2877–2889, 2022.
  19. Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang, “Adversarial posenet: A structure-aware convolutional network for human pose estimation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1212–1221, 2017.
  20. W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, “Deep learning for single image super-resolution: A brief review,” IEEE Transactions on Multimedia, vol. 21, no. 12, pp. 3106–3121, 2019.
  21. J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1646–1654, 2016.
  22. C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural network,” in Proceedings of the European Conference on Computer Vision, pp. 391–407, 2016.
  23. T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense skip connections,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4799–4807, 2017.
  24. B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144, 2017.
  25. Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution using very deep residual channel attention networks,” in Proceedings of the European Conference on Computer Vision, pp. 286–301, 2018.
  26. Y. Liu, S. Wang, J. Zhang, S. Wang, S. Ma, and W. Gao, “Iterative network for image super-resolution,” IEEE Transactions on Multimedia, vol. 24, pp. 2259–2272, 2022.
  27. M. Zhang, Q. Wu, J. Guo, Y. Li, and X. Gao, “Heat transfer-inspired network for image super-resolution reconstruction,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  28. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  29. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4681–4690, 2017.
  30. X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, “Esrgan: Enhanced super-resolution generative adversarial networks,” in Proceedings of the European Conference on Computer Vision Workshops, pp. 1–8, 2018.
  31. W. Zhang, Y. Liu, C. Dong, and Y. Qiao, “Ranksrgan: Generative adversarial networks with ranker for image super-resolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3096–3105, 2019.
  32. Y. Yan, C. Liu, C. Chen, X. Sun, L. Jin, X. Peng, and X. Zhou, “Fine-grained attention and feature-sharing generative adversarial networks for single image super-resolution,” IEEE Transactions on Multimedia, vol. 24, pp. 1473–1487, 2021.
  33. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, pp. 1–11, 2017.
  34. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” 2020.
  35. F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo, “Learning texture transformer network for image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5791–5800, 2020.
  36. Z. Lu, J. Li, H. Liu, C. Huang, L. Zhang, and T. Zeng, “Transformer for single image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 457–466, 2022.
  37. Y. Yuan, S. Liu, J. Zhang, Y. Zhang, C. Dong, and L. Lin, “Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 701–710, 2018.
  38. J. Gu, H. Lu, W. Zuo, and C. Dong, “Blind super-resolution with iterative kernel correction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1604–1613, 2019.
  39. A. Lugmayr, M. Danelljan, and R. Timofte, “Unsupervised learning for real-world super-resolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, pp. 3408–3416, 2019.
  40. A. Ignatov, N. Kobyshev, R. Timofte, K. Vanhoey, and L. Van Gool, “Dslr-quality photos on mobile devices with deep convolutional networks,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3277–3285, 2017.
  41. D. S. Jeon, S.-H. Baek, I. Choi, and M. H. Kim, “Enhancing the spatial resolution of stereo images using a parallax prior,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1721–1730, 2018.
  42. B. Yan, C. Ma, B. Bare, W. Tan, and S. C. Hoi, “Disparity-aware domain adaptation in stereo image restoration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13179–13187, 2020.
  43. K. Jin, Z. Wei, A. Yang, S. Guo, M. Gao, X. Zhou, and G. Guo, “Swinipassr: Swin transformer based parallax attention network for stereo image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 920–929, 2022.
  44. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.
  45. Y. Wang, L. Wang, J. Yang, W. An, and Y. Guo, “Flickr1024: A large-scale dataset for stereo image super-resolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 1–6, 2019.
  46. Y. Zhou, Y. Xue, W. Deng, R. Nie, J. Zhang, et al., “Stereo cross global learnable attention module for stereo image super-resolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 1–10, 2023.
  47. W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1874–1883, 2016.
  48. J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.
  49. A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324, 2019.
  50. J.-N. Su, M. Gan, G.-Y. Chen, J.-L. Yin, and C. P. Chen, “Global learnable attention for single image super-resolution,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  51. T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.
  52. C. Ma, B. Yan, W. Tan, and X. Jiang, “Perception-oriented stereo image super-resolution,” in Proceedings of the 29th ACM International Conference on Multimedia, pp. 2420–2428, 2021.
  53. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  54. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 586–595, 2018.
  55. D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in Pattern Recognition: 36th German Conference, Münster, Germany, Proceedings 36, pp. 31–42, 2014.
  56. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3354–3361, 2012.
  57. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “The kitti vision benchmark suite,” URL http://www. cvlibs. net/datasets/kitti, vol. 2, no. 5, pp. 1–13, 2015.
  58. Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2472–2481, 2018.
  59. J. Lei, Z. Zhang, X. Fan, B. Yang, X. Li, Y. Chen, and Q. Huang, “Deep stereoscopic image super-resolution via interaction module,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 8, pp. 3051–3061, 2020.
  60. Q. Dai, J. Li, Q. Yi, F. Fang, and G. Zhang, “Feedback network for mutually boosted stereo image super-resolution and disparity estimation,” in Proceedings of the 29th ACM International Conference on Multimedia, pp. 1985–1993, 2021.
  61. L. Wang, Y. Guo, Y. Wang, J. Li, S. Gu, and R. Timofte, “Ntire 2023 challenge on stereo image super-resolution: Methods and results,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–26, 2023.
  62. C. Ma, C.-Y. Yang, X. Yang, and M.-H. Yang, “Learning a no-reference quality metric for single-image super-resolution,” Computer Vision and Image Understanding, vol. 158, pp. 1–16, 2017.
  63. Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor, “The 2018 pirm challenge on perceptual image super-resolution,” in Proceedings of the European Conference on Computer Vision Workshops, pp. 1–23, 2018.
  64. L. Lipson, Z. Teed, and J. Deng, “Raft-stereo: Multilevel recurrent field transforms for stereo matching,” in Proceedings of the IEEE Conference on International Conference on 3D Vision, pp. 218–227, 2021.
  65. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  66. I. Loshchilov and F. Hutter, “Stochastic gradient descent with warm restarts,” in Proceedings of the 5th International Conference on Learning Representations, pp. 1–16, 2016.
  67. J. Gu and C. Dong, “Interpreting super-resolution networks with local attribution maps,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9199–9208, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub