Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visible Light Positioning under Luminous Flux Degradation of LEDs (2312.07742v1)

Published 12 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: The position estimation problem based on received power measurements is investigated for visible light systems in the presence of luminous flux degradation of light emitting diodes (LEDs). When the receiver is unaware of this degradation and performs position estimation accordingly, there exists a mismatch between the true model and the assumed model. For this scenario, the misspecified Cram\'er-Rao bound (MCRB) and the mismatched maximum likelihood (MML) estimator are derived to quantify the performance loss due to this model mismatch. Also, the Cram\'er-Rao lower bound (CRB) and the maximum likelihood (ML) estimator are derived when the receiver knows the degradation formula for the LEDs but does not know the decay rate parameter in that formula. In addition, in the presence of full knowledge about the degradation formula and the decay rate parameters, the CRB and the ML estimator are obtained to specify the best achievable performance. By evaluating the theoretical limits and the estimators in these three scenarios, we reveal the effects of the information about the LED degradation model and the decay rate parameters on position estimation performance. It is shown that the model mismatch can result in significant degradation in localization performance at high signal-to-noise ratios, which can be compensated by conducting joint position and decay rate parameter estimation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. S. Monica and G. Ferrari, “UWB-based localization in large indoor scenarios: optimized placement of anchor nodes,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 987–999, 2015.
  2. S. Schmid, T. Richner, S. Mangold, and T. R. Gross, “Enlighting: An indoor visible light communication system based on networked light bulbs,” in 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), June 2016, pp. 1–9.
  3. A. M. Căilean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2681–2703, 4th Quart. 2017.
  4. R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: Automotive use case,” in Vehicular Networking Conference (VNC), 2010 IEEE, 2010, pp. 309–314.
  5. B. Béchadergue, L. Chassagne, and H. Guan, “Visible light phase-shift rangefinder for platooning applications,” in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Nov. 2016, pp. 2462–2468.
  6. J. Armstrong, Y. A. Sekercioglu, and A. Neild, “Visible light positioning: A roadmap for international standardization,” IEEE Communications Magazine, vol. 51, no. 12, pp. 68–73, 2013.
  7. N. Kbayer and M. Sahmoudi, “Performances analysis of GNSS NLOS bias correction in urban environment using a three-dimensional city model and GNSS simulator,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 4, pp. 1799–1814, 2018.
  8. D. N. Amanor, W. W. Edmonson, and F. Afghah, “Intersatellite communication system based on visible light,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 6, pp. 2888–2899, 2018.
  9. M. F. Keskin, A. D. Sezer, and S. Gezici, “Localization via visible light systems,” Proceedings of the IEEE, vol. 106, no. 6, pp. 1063–1088, June 2018.
  10. Y. Zhuang, L. Hua, L. Qi, J. Yang, P. Cao, Y. Cao, Y. Wu, J. Thompson, and H. Haas, “A survey of positioning systems using visible LED lights,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1963–1988, 2018.
  11. O. Yazar, M. F. Keskin, and S. Gezici, “Power-efficient positioning for visible light systems via chance constrained optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 5, pp. 4124–4131, 2020.
  12. H. Steendam, T. Q. Wang, and J. Armstrong, “Cramer-Rao bound for indoor visible light positioning using an aperture-based angular-diversity receiver,” in 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1–6.
  13. A. Sahin, Y. S. Eroglu, I. Guvenc, N. Pala, and M. Yuksel, “Hybrid 3-D localization for visible light communication systems,” Journal of Lightwave Technology, vol. 33, no. 22, pp. 4589–4599, 2015.
  14. M. F. Keskin, S. Gezici, and O. Arikan, “Direct and two-step positioning in visible light systems,” IEEE Transactions on Communications, vol. 66, no. 1, pp. 239–254, Jan. 2018.
  15. H. Steendam, T. Q. Wang, and J. Armstrong, “Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver,” Journal of Lightwave Technology, vol. 35, no. 2, pp. 309–319, 2017.
  16. M. Aminikashani, W. Gu, and M. Kavehrad, “Indoor positioning with OFDM visible light communications,” in 2016 13th IEEE Annual Consumer Communications Networking Conference (CCNC), Jan. 2016, pp. 505–510.
  17. B. Zhou, A. Liu, and V. Lau, “On the fundamental performance limit of visible light-based positioning,” in 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS), 2019, pp. 1–6.
  18. H. Steendam, T. Q. Wang, and J. Armstrong, “Cramer-Rao bound for AOA-based VLP with an aperture-based receiver,” in 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6.
  19. S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han, “Three-dimensional visible light indoor localization using AOA and RSS with multiple optical receivers,” Journal of Lightwave Technology, vol. 32, no. 14, pp. 2480–2485, 2014.
  20. G. B. Prince and T. D. Little, “Latency constrained device positioning using a visible light communication two-phase received signal strength - angle of arrival algorithm,” in 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2015, pp. 1–7.
  21. W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning system based on visible light communications,” Optical Engineering, vol. 53, no. 4, pp. 045 105–1–045 105–9, 2014.
  22. L. Li, P. Hu, C. Peng, G. Shen, and F. Zhao, “Epsilon: A visible light based positioning system,” in 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Seattle, WA, Apr. 2014, pp. 331–343.
  23. L. Hua, Y. Zhuang, Y. Li, Q. Wang, B. Zhou, L. Qi, J. Yang, Y. Cao, and H. Haas, “FusionVLP: The fusion of photodiode and camera for visible light positioning,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11 796–11 811, 2021.
  24. B. Soner and S. Coleri, “Visible light communication based vehicle localization for collision avoidance and platooning,” IEEE Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2167–2180, 2021.
  25. S. Shen, S. Li, and H. Steendam, “Simultaneous position and orientation estimation for visible light systems with multiple LEDs and multiple PDs,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1866–1879, 2020.
  26. G. Kail, P. Maechler, N. Preyss, and A. Burg, “Robust asynchronous indoor localization using LED lighting,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 1866–1870.
  27. B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous positioning and orientating for visible light communications: Algorithm design and performance analysis,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11 790–11 804, 2018.
  28. Y. Chen, W. Guan, J. Li, and H. Song, “Indoor real-time 3-D visible light positioning system using fingerprinting and extreme learning machine,” IEEE Access, vol. 8, pp. 13 875–13 886, 2020.
  29. H. Q. Tran and C. Ha, “High precision weighted optimum K-nearest neighbors algorithm for indoor visible light positioning applications,” IEEE Access, vol. 8, pp. 114 597–114 607, 2020.
  30. M. A. Arfaoui, M. D. Soltani, I. Tavakkolnia, A. Ghrayeb, C. M. Assi, M. Safari, and H. Haas, “Invoking deep learning for joint estimation of indoor LiFi user position and orientation,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 9, pp. 2890–2905, 2021.
  31. M. T. Van, N. Van Tuan, T. T. Son, H. Le-Minh, and A. Burton, “Weighted K-nearest neighbour model for indoor VLC positioning,” IET Communications, vol. 11, no. 6, pp. 864–871, 2017.
  32. M. Xu, W. Xia, Z. Jia, Y. Zhu, and L. Shen, “A VLC-based 3-D indoor positioning system using fingerprinting and K-nearest neighbor,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 2017, pp. 1–5.
  33. F. Alam, M. T. Chew, T. Wenge, and G. S. Gupta, “An accurate visible light positioning system using regenerated fingerprint database based on calibrated propagation model,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 8, pp. 2714–2723, 2019.
  34. H. Huang, A. Yang, L. Feng, G. Ni, and P. Guo, “Artificial neural-network-based visible light positioning algorithm with a diffuse optical channel,” Chinese Optics Letters, vol. 15, no. 5, p. 050601, 2017.
  35. T. Yuan, Y. Xu, Y. Wang, P. Han, and J. Chen, “A tilt receiver correction method for visible light positioning using machine learning method,” IEEE Photonics Journal, vol. 10, no. 6, pp. 1–12, 2018.
  36. M. Saadi, T. Ahmad, Y. Zhao, and L. Wuttisttikulkij, “An LED based indoor localization system using k-means clustering,” in 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 2016, pp. 246–252.
  37. M. Saadi, Z. Saeed, T. Ahmad, M. K. Saleem, and L. Wuttisittikulkij, “Visible light-based indoor localization using k-means clustering and linear regression,” Transactions on Emerging Telecommunications Technologies, vol. 30, no. 2, p. e3480, 2019.
  38. A. Gradim, P. Fonseca, L. N. Alves, and R. E. Mohamed, “On the usage of machine learning techniques to improve position accuracy in visible light positioning systems,” in 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2018, pp. 1–6.
  39. X. Guo, S. Shao, N. Ansari, and A. Khreishah, “Indoor localization using visible light via fusion of multiple classifiers,” IEEE Photonics Journal, vol. 9, no. 6, pp. 1–16, 2017.
  40. X. Guo, F. Hu, N. R. Elikplim, and L. Li, “Indoor localization using visible light via two-layer fusion network,” IEEE Access, vol. 7, pp. 16 421–16 430, 2019.
  41. R. Liu, Z. Liang, K. Yang, and W. Li, “Machine learning based visible light indoor positioning with single-LED and single rotatable photo detector,” IEEE Photonics Journal, vol. 14, no. 3, pp. 1–11, 2022.
  42. A. H. A. Bakar, T. Glass, H. Y. Tee, F. Alam, and M. Legg, “Accurate visible light positioning using multiple-photodiode receiver and machine learning,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–12, 2021.
  43. X. Li, Y. Cao, and C. Chen, “Machine learning based high accuracy indoor visible light location algorithm,” in 2018 IEEE International Conference on Smart Internet of Things (SmartIoT), 2018, pp. 198–203.
  44. X. Cao, Y. Zhuang, G. Chen, X. Wang, X. Yang, and B. Zhou, “A visible light positioning system based on particle filter and deep learning,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1–15, 2023.
  45. D. Plets, S. Bastiaens, L. Martens, W. Joseph, and N. Stevens, “On the impact of LED power uncertainty on the accuracy of 2D and 3D visible light positioning,” Optik, vol. 195, p. 163027, 2019.
  46. B. Zhou, A. Liu, and V. Lau, “Joint user location and orientation estimation for visible light communication systems with unknown power emission,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5181–5195, 2019.
  47. S. Shen and S. Li, “Theoretical bound of position and orientation estimation for visible light systems subject to NLOS channel and power uncertainty,” IEEE Communications Letters, vol. 26, no. 6, pp. 1283–1287, 2022.
  48. S. Fortunati, F. Gini, M. S. Greco, and C. D. Richmond, “Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 142–157, 2017.
  49. C. Ozturk, M. F. Keskin, H. Wymeersch, and S. Gezici, “RIS-aided near-field localization under phase-dependent amplitude variations,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  50. E. Gonendik and S. Gezici, “Fundamental limits on RSS based range estimation in visible light positioning systems,” IEEE Communications Letters, vol. 19, no. 12, pp. 2138–2141, Dec. 2015.
  51. M. F. Keskin, A. D. Sezer, and S. Gezici, “Optimal and robust power allocation for visible light positioning systems under illumination constraints,” IEEE Transactions on Communications, vol. 67, no. 1, pp. 527–542, 2019.
  52. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the art,” IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1649–1678, 3rd Quart. 2015.
  53. S. D. Lausnay, L. D. Strycker, J. P. Goemaere, B. Nauwelaers, and N. Stevens, “A survey on multiple access visible light positioning,” in IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), Aug. 2016, pp. 38–42.
  54. F. Kokdogan and S. Gezici, “Visible light positioning in the presence of malicious LED transmitters,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 397–411, 2023.
  55. T. Wang, Y. Sekercioglu, A. Neild, and J. Armstrong, “Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems,” Journal of Lightwave Technology, vol. 31, no. 20, pp. 3302–3308, Oct. 2013.
  56. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997.
  57. S. Fortunati, F. Gini, and M. S. Greco, “Chapter 4 - Parameter bounds under misspecified models for adaptive radar detection,” in Academic Press Library in Signal Processing, Volume 7, R. Chellappa and S. Theodoridis, Eds.   Academic Press, 2018, pp. 197–252. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128118870000043
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com