Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bose-Einstein condensation by polarization gradient laser cooling (2312.07708v1)

Published 12 Dec 2023 in physics.atom-ph, cond-mat.quant-gas, and quant-ph

Abstract: Attempts to create quantum degenerate gases without evaporative cooling have been pursued since the early days of laser cooling, with the consensus that polarization gradient cooling (PGC, also known as "optical molasses") alone cannot reach condensation. In the present work, we report that simple PGC can generate a small Bose-Einstein condensate (BEC) inside a corrugated micrometer-sized optical dipole trap. The experimental parameters enabling BEC creation were found by machine learning, which increased the atom number by a factor of 5 and decreased the temperature by a factor of 2.5, corresponding to almost two orders of magnitude gain in phase space density. When the trapping light is slightly misaligned through a microscopic objective lens, a BEC of $\sim 250$ ${87}$Rb atoms is formed inside a local dimple within 40 ms of PGC.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and interferometry with atoms and molecules, Reviews of Modern Physics 81, 1051 (2009).
  2. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
  3. I. Bloch, J. Dalibard, and S. Nascimbene, Quantum simulations with ultracold quantum gases, Nature Physics 8, 267 (2012).
  4. J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical models, J. Opt. Soc. Am. B 6, 2023 (1989).
  5. M. Kasevich and S. Chu, Laser cooling below a photon recoil with three-level atoms, Phys. Rev. Lett. 69, 1741 (1992).
  6. W. Ketterle and N. V. Druten, Evaporative cooling of trapped atoms (Academic Press, 1996) pp. 181–236.
  7. K. Burnett, P. S. Julienne, and K.-A. Suominen, Laser-driven collisions between atoms in a Bose-Einstein Condensed Gas, Phys. Rev. Lett. 77, 1416 (1996).
  8. T. Kinoshita, T. Wenger, and D. S. Weiss, All-optical Bose-Einstein condensation using a compressible crossed dipole trap, Phys. Rev. A 71, 011602 (2005).
  9. See supplemental material at [url will be inserted by publisher].
  10. Y. H. Fung, P. Sompet, and M. F. Andersen, Single atoms preparation using light-assisted collisions, Technologies 4, 10.3390/technologies4010004 (2016).
  11. M. Kasevich and S. Chu, Atomic interferometry using stimulated raman transitions, Phys. Rev. Lett. 67, 181 (1991).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com