Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rational Approximations for Oscillatory Two-Parameter Mittag-Leffler Function (2312.07444v1)

Published 12 Dec 2023 in math.NA and cs.NA

Abstract: The two-parameter Mittag-Leffler function $E_{\alpha, \beta}$ is of fundamental importance in fractional calculus. It appears frequently in the solutions of fractional differential and integral equations. Nonetheless, this vital function is often expensive to compute. Several attempts have been made to construct cost-effective and accurate approximations. These attempts focus mainly on the completely monotone Mittag-Leffler functions. However, when $\alpha > 1$ the monotonicity property is largely lost and as such roots and oscillations are exhibited. Consequently, existing approximants constructed mainly for $\alpha \in (0,1)$ often fail to capture this oscillatory behavior. In this paper, we construct computationally efficient and accurate rational approximants for $E_{\alpha, \beta}(-t)$, $t \ge 0$, with $\alpha \in (1,2)$. This construction is fundamentally based on the decomposition of Mittag-Leffler function with real roots into one without and a polynomial. Following which new approximants are constructed by combining the global Pad\'e approximation with a polynomial of appropriate degree. The rational approximants are extended to approximation of matrix Mittag-Leffler and different approaches to achieve efficient implementation for matrix arguments are discussed. Numerical experiments are provided to illustrate the significant accuracy improvement achieved by the proposed approximants.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solitons & Fractals, vol. 7, no. 9, pp. 1461–1477, 1996.
  2. B. N. Achar, J. Hanneken, T. Enck, and T. Clarke, “Dynamics of the fractional oscillator,” Physica A: Statistical Mechanics and its Applications, vol. 297, no. 3-4, pp. 361–367, 2001.
  3. A. Stanislavsky, “Fractional oscillator,” Physical review E, vol. 70, no. 5, p. 051103, 2004.
  4. A. A. Stanislavsky, “Twist of fractional oscillations,” Physica A: Statistical Mechanics and its Applications, vol. 354, pp. 101–110, 2005.
  5. R. Gorenflo, J. Loutchko, and Y. Luchko, “Computation of the Mittag-Leffler function Eα,β⁢(z)subscript𝐸𝛼𝛽𝑧E_{\alpha,\beta}(z)italic_E start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT ( italic_z ) and its derivative,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 491–518, 2002.
  6. R. Garrappa, “Numerical evalution of two and three parameter Mittag-Leffler functions,” SIAM Journal on Numerical Analysis, vol. 53, no. 3, pp. 1350–1369, 2015.
  7. I. O. Sarumi, K. M. Furati, and A. Q. M. Khaliq, “Highly accurate global Padé approximations of generalized Mittag–Leffler function and its inverse,” Journal of Scientific Computing, vol. 82, no. 46, 2020.
  8. I. O. Sarumi, K. M. Furati, A. Q. M. Khaliq, and K. Mustapha, “Generalized exponential time differencing schemes for stiff fractional systems with nonsmooth source term,” Journal of Scientific Computing, vol. 86, no. 23, 2021.
  9. O. S. Iyiola, E. O. Asante-Asamani, and B. A. Wade, “A real distinct poles rational approximation of generalized Mittag-Leffler functions and their inverses: applications to fractional calculus,” Journal of Computational and Applied Mathematics, vol. 330, pp. 307–317, 2018.
  10. A. P. Starovoitov and N. A. Starovoitova, “Padé approximants of the Mittag-Leffler functions,” Sbornik Mathematics, vol. 198, no. 7, pp. 1011–1023, 2007.
  11. A. Borhanifar and S. Valizadeh, “Mittag-Leffler-Padé approximations for the numerical solution of space and time fractional diffusion equations,” International Journal of Applied Mathematics Research, vol. 4, no. 4, p. 466, 2015.
  12. S. Winitzki, “Uniform approximations for transcendental functions,” in Computational Science and Its Applications — ICCSA 2003, V. Kumar, M. L. Gavrilova, C. J. K. Tan, and P. L’Ecuyer, Eds.   Berlin, Heidelberg: Springer, 2003, pp. 780–789.
  13. C. Atkinson and A. Osseiran, “Rational solutions for the time-fractional diffusion equation,” SIAM Journal on Applied Mathematics, vol. 71, no. 1, pp. 92–106, 2011.
  14. C. Zeng and Y. Q. Chen, “Global Padé approximations of the generalized Mittag-Leffler function and its inverse,” Fractional Calculus and Applied Analysis, vol. 18, no. 6, pp. 1492–1506, 2015.
  15. C. Ingo, T. R. Barrick, A. G. Webb, and I. Ronen, “Accurate Padé global approximations for the Mittag-Leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series,” International Journal of Applied and Computational Mathematics, vol. 3, no. 2, pp. 347–362, 2017.
  16. J. W. Hanneken, D. M. Vaught, and B. Achar, “Enumeration of the real zeros of the Mittag-Leffler function Eα⁢(z)subscript𝐸𝛼𝑧E_{\alpha}(z)italic_E start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( italic_z ), 1<α<21𝛼21<\alpha<21 < italic_α < 2,” in Advances in Fractional Calculus.   Springer, 2007, pp. 15–26.
  17. J. W. Hanneken, B. Achar, and D. M. Vaught, “An alpha-beta phase diagram representation of the zeros and properties of the Mittag-Leffler function,” Advances in Mathematical Physics, vol. 2013, 2013.
  18. J.-S. Duan, Z. Wang, and S.-Z. Fu, “The zeros of the solutions of the fractional oscillation equation,” Fractional Calculus and Applied Analysis, vol. 17, no. 1, pp. 10–22, 2014.
  19. R. Garrappa and M. Popolizio, “Computing the matrix Mittag-Leffler function with applications to fractional calculus,” Journal of Scientific Computing, vol. 77, no. 1, pp. 129–153, 2018.
  20. A. H. Honain and K. M. Furati, “Rational approximation for oscillatory mittag-leffler function,” in 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA).   IEEE, 2023, pp. 1–5.
  21. H. J. Haubold, A. M. Mathai, and R. K. Saxena, “Mittag-Leffler functions and their applications,” Journal of applied mathematics, vol. 2011, 2011.
  22. A. Sadeghi and J. R. Cardoso, “Some notes on properties of the matrix Mittag-Leffler function,” Applied Mathematics and Computation, vol. 338, pp. 733–738, 2018.
  23. J. G. Aguilar, J. R. Hernández, R. E. Jiménez, C. Astorga-Zaragoza, V. O. Peregrino, and T. C. Fraga, “Fractional electromagnetic waves in plasma,” Proc. Romanian Acad. A, vol. 17, no. 1, pp. 31–38, 2014.
  24. J. Q. Murillo and S. B. Yuste, “An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form,” Journal of Computational and Nonlinear Dynamics, vol. 6, no. 2, 2011.

Summary

We haven't generated a summary for this paper yet.