Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Modal Conformal Prediction Regions with Simple Structures by Optimizing Convex Shape Templates (2312.07434v2)

Published 12 Dec 2023 in cs.LG, cs.SY, and eess.SY

Abstract: Conformal prediction is a statistical tool for producing prediction regions for machine learning models that are valid with high probability. A key component of conformal prediction algorithms is a \emph{non-conformity score function} that quantifies how different a model's prediction is from the unknown ground truth value. Essentially, these functions determine the shape and the size of the conformal prediction regions. While prior work has gone into creating score functions that produce multi-model prediction regions, such regions are generally too complex for use in downstream planning and control problems. We propose a method that optimizes parameterized \emph{shape template functions} over calibration data, which results in non-conformity score functions that produce prediction regions with minimum volume. Our approach results in prediction regions that are \emph{multi-modal}, so they can properly capture residuals of distributions that have multiple modes, and \emph{practical}, so each region is convex and can be easily incorporated into downstream tasks, such as a motion planner using conformal prediction regions. Our method applies to general supervised learning tasks, while we illustrate its use in time-series prediction. We provide a toolbox and present illustrative case studies of F16 fighter jets and autonomous vehicles, showing an up to $68\%$ reduction in prediction region area compared to a circular baseline region.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Renukanandan Tumu (5 papers)
  2. Matthew Cleaveland (14 papers)
  3. Rahul Mangharam (44 papers)
  4. George J. Pappas (208 papers)
  5. Lars Lindemann (68 papers)

Summary

We haven't generated a summary for this paper yet.