Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NVS-Adapter: Plug-and-Play Novel View Synthesis from a Single Image (2312.07315v2)

Published 12 Dec 2023 in cs.CV

Abstract: Transfer learning of large-scale Text-to-Image (T2I) models has recently shown impressive potential for Novel View Synthesis (NVS) of diverse objects from a single image. While previous methods typically train large models on multi-view datasets for NVS, fine-tuning the whole parameters of T2I models not only demands a high cost but also reduces the generalization capacity of T2I models in generating diverse images in a new domain. In this study, we propose an effective method, dubbed NVS-Adapter, which is a plug-and-play module for a T2I model, to synthesize novel multi-views of visual objects while fully exploiting the generalization capacity of T2I models. NVS-Adapter consists of two main components; view-consistency cross-attention learns the visual correspondences to align the local details of view features, and global semantic conditioning aligns the semantic structure of generated views with the reference view. Experimental results demonstrate that the NVS-Adapter can effectively synthesize geometrically consistent multi-views and also achieve high performance on benchmarks without full fine-tuning of T2I models. The code and data are publicly available in ~\href{https://postech-cvlab.github.io/nvsadapter/}{https://postech-cvlab.github.io/nvsadapter/}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yoonwoo Jeong (7 papers)
  2. Jinwoo Lee (17 papers)
  3. Chiheon Kim (16 papers)
  4. Minsu Cho (105 papers)
  5. Doyup Lee (13 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.