Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalarizing Multi-Objective Robot Planning Problems using Weighted Maximization (2312.07227v1)

Published 12 Dec 2023 in cs.RO

Abstract: When designing a motion planner for autonomous robots there are usually multiple objectives to be considered. However, a cost function that yields the desired trade-off between objectives is not easily obtainable. A common technique across many applications is to use a weighted sum of relevant objective functions and then carefully adapt the weights. However, this approach may not find all relevant trade-offs even in simple planning problems. Thus, we study an alternative method based on a weighted maximum of objectives. Such a cost function is more expressive than the weighted sum, and we show how it can be deployed in both continuous- and discrete-space motion planning problems. We propose a novel path planning algorithm for the proposed cost function and establish its correctness, and present heuristic adaptations that yield a practical runtime. In extensive simulation experiments, we demonstrate that the proposed cost function and algorithm are able to find a wider range of trade-offs between objectives (i.e., Pareto-optimal solutions) for various planning problems, showcasing its advantages in practice.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nils Wilde (15 papers)
  2. Stephen L. Smith (69 papers)
  3. Javier Alonso-Mora (76 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.