Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental Investigation of Machine Learning based Soft-Failure Management using the Optical Spectrum (2312.07208v1)

Published 12 Dec 2023 in cs.NI and cs.LG

Abstract: The demand for high-speed data is exponentially growing. To conquer this, optical networks underwent significant changes getting more complex and versatile. The increasing complexity necessitates the fault management to be more adaptive to enhance network assurance. In this paper, we experimentally compare the performance of soft-failure management of different machine learning algorithms. We further introduce a machine-learning based soft-failure management framework. It utilizes a variational autoencoder based generative adversarial network (VAE-GAN) running on optical spectral data obtained by optical spectrum analyzers. The framework is able to reliably run on a fraction of available training data as well as identifying unknown failure types. The investigations show, that the VAE-GAN outperforms the other machine learning algorithms when up to 10\% of the total training data is available in identification tasks. Furthermore, the advanced training mechanism for the GAN shows a high F1-score for unknown spectrum identification. The failure localization comparison shows the advantage of a low complexity neural network in combination with a VAE over established machine learning algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. D. Rafique, T. Szyrkowiec, H. Grießer, A. Autenrieth, and J.-P. Elbers, “Cognitive assurance architecture for optical network fault management,” \JournalTitleJournal of Lightwave Technology 36, 1443–1450 (2017).
  2. F. Musumeci, C. Rottondi, G. Corani, S. Shahkarami, F. Cugini, and M. Tornatore, “A tutorial on machine learning for failure management in optical networks,” \JournalTitleJournal of Lightwave Technology 37, 4125–4139 (2019).
  3. A. P. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, G. Meloni, L. Potì, L. Velasco, and P. Castoldi, “BER degradation detection and failure identification in elastic optical networks,” \JournalTitleJournal of Lightwave Technology 35, 4595–4604 (2017).
  4. B. Shariati, M. Ruiz, J. Comellas, and L. Velasco, “Learning from the optical spectrum: failure detection and identification,” \JournalTitleJournal of Lightwave Technology 37, 433–440 (2019).
  5. H. Lun, M. Fu, X. Liu, Y. Wu, L. Yi, W. Hu, and Q. Zhuge, “Soft failure identification for long-haul optical communication systems based on one-dimensional convolutional neural network,” \JournalTitleJournal of Lightwave Technology 38, 2992–2999 (2020).
  6. K. S. Mayer, J. A. Soares, R. P. Pinto, C. E. Rothenberg, D. S. Arantes, and D. A. Mello, “Machine-learning-based soft-failure localization with partial software-defined networking telemetry,” \JournalTitleJournal of Optical Communications and Networking 13, E122–E131 (2021).
  7. K. Abdelli, H. Grießer, P. Ehrle, C. Tropschug, and S. Pachnicke, “Reflective fiber fault detection and characterization using long short-term memory,” \JournalTitleJournal of Optical Communications and Networking 13, E32–E41 (2021).
  8. K. S. Mayer, R. P. Pinto, J. A. Soares, D. S. Arantes, C. E. Rothenberg, V. Cavalcante, L. L. Santos, F. D. Moraes, and D. A. Mello, “Demonstration of ML-assisted soft-failure localization based on network digital twins,” \JournalTitleJournal of Lightwave Technology 40, 4514–4520 (2022).
  9. L. E. Kruse and S. Pachnicke, “EDFA soft-failure detection and lifetime prediction based on spectral data using 1-D convolutional neural network,” in Photonic Networks; 22th ITG Symposium, (VDE, 2021), pp. 1–6.
  10. L. E. Kruse, S. Kühl, A. Dochhan, and S. Pachnicke, “Experimental demonstration of soft-failure management using variational autoencoder and GAN on optical spectrum,” in 2023 European Conference on Optical Communication (ECOC), (IEEE, 2023).
  11. T. Cover and P. Hart, “Nearest neighbor pattern classification,” \JournalTitleIEEE transactions on information theory 13, 21–27 (1967).
  12. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” \JournalTitleStatistics and computing 14, 199–222 (2004).
  13. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and regression trees. belmont, ca: Wadsworth,” \JournalTitleInternational Group 432, 9 (1984).
  14. A. Liaw, M. Wiener et al., “Classification and regression by randomforest,” \JournalTitleR news 2, 18–22 (2002).
  15. L. E. Kruse, S. Kühl, A. Dochhan, and S. Pachnicke, “Experimental investigation of spectral data enhanced QoT estimation,” \JournalTitleJournal of Lightwave Technology 41, 5885–5894 (2023).
  16. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” \JournalTitleCommunications of the ACM 63, 139–144 (2020).
  17. A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, “Generative adversarial networks: An overview,” \JournalTitleIEEE Signal Processing Magazine 35, 53–65 (2018).
  18. M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in International Conference on Machine Learning, (PMLR, 2017), pp. 214–223.
  19. J. An and S. Cho, “Variational autoencoder based anomaly detection using reconstruction probability,” \JournalTitleSpecial lecture on IE 2, 1–18 (2015).
  20. K. Abdelli, J. Y. Cho, F. Azendorf, H. Griesser, C. Tropschug, and S. Pachnicke, “Machine-learning-based anomaly detection in optical fiber monitoring,” \JournalTitleJournal of Optical Communications and Networking 14, 365–375 (2022).
  21. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training gans,” \JournalTitleAdvances in Neural Information Processing Systems 29 (2016).
  22. T. Richter, J. Pan, and S. Tibuleac, “Comparison of WDM bandwidth loading using individual transponders, shaped, and flat ASE noise,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.
  23. S. Ohlendorf, T. Wettlin, S. Pachnicke, and W. Rosenkranz, “Optimized flexible mappings with multidimensional modulation for coherent optical transport,” in 45th European Conference on Optical Communication (ECOC 2019), (IET, 2019), pp. 1–4.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com