Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear complementary pairs of skew constacyclic codes (2312.07183v3)

Published 12 Dec 2023 in cs.IT, math.IT, and math.RA

Abstract: Linear complementary pairs (LCPs) of codes have been studied since they were introduced in the context of discussing mitigation measures against possible hardware attacks to integrated circuits. In this situation, the security parameters for LCPs of codes are defined as the (Hamming) distance and the dual distance of the codes in the pair. We study the properties of LCPs of skew constacyclic codes, since their algebraic structure provides tools for studying their duals and their distances. As a result, we give a characterization for those pairs, as well as multiple results that lead to constructing pairs with designed security parameters. We extend skew BCH codes to a constacyclic context and show that an LCP of codes can be immediately constructed from a skew BCH constacyclic code. Additionally, we describe a Hamming weight-preserving automorphism group in the set of skew constacyclic codes, which can be used for constructing LCPs of codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses. In IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pages 82–87, May 2015. doi:10.1109/HST.2015.7140242.
  2. J. L. Massey. Linear codes with complementary duals. Discrete Math., 106–107:337–342, 1992. doi:10.1016/0012-365X(92)90563-U.
  3. On linear complementary pairs of codes. IEEE Trans. Inform. Theory, 64(10):6583–6589, 2018. doi:10.1109/TIT.2018.2796125.
  4. Skew-cyclic codes. Appl. Algebra Engrg. Comm. Comput., 18:379–389, 2007. doi:10.1007/s00200-007-0043-z.
  5. An overview on skew constacyclic codes and their subclass of LCD codes. Adv. Math. Commun., 15(4):611–632, 2021. doi:10.3934/amc.2020085.
  6. Primitive idempotents in central simple algebras over 𝔽q⁢(t)subscript𝔽𝑞𝑡\mathbb{F}_{q}(t)blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_t ) with an application to coding theory. Finite Fields Appl., 77:101935, 2022. doi:10.1016/j.ffa.2021.101935.
  7. A Sugiyama-like decoding algorithm for convolutional codes. IEEE Trans. Inform. Theory, 63(10):6216–6226, 2017. doi:10.1109/TIT.2017.2731774.
  8. Peterson–Gorenstein–Zierler algorithm for skew RS codes. Linear Multilinear Algebra, 66(3):469–487, 2017. doi:10.1080/03081087.2017.1301364.
  9. Hartmann–Tzeng bound and skew cyclic codes of designed hamming distance. Finite Fields Appl., 50:84–112, 2018. doi:10.1016/j.ffa.2017.11.001.
  10. Roos bound for skew cyclic codes in Hamming and rank metric. Finite Fields Appl., 69:101772, 2021. doi:10.1016/j.ffa.2020.101772.
  11. O. Ore. Theory of non-commutative polynomials. Annals of Mathematics, 34(3):480–508, 1933. doi:10.2307/1968173.
  12. N. Jacobson. Finite-dimensional division algebras over fields. Springer, Berlin, 1996. doi:10.1007/978-3-642-02429-0.
  13. Algorithmic methods in non-commutative algebra. Applications to quantum groups, volume 17 of Mathematical Modelling: Theory and Applications. Kluwer Academic Publishers, Dordrecht, 2003. doi:10.1007/978-94-017-0285-0.
  14. T. Y. Lam and A. Leroy. Vandermonde and Wronskian matrices over division rings. J. Algebra, 119(2):308 – 336, 1988. doi:10.1016/0021-8693(88)90063-4.
  15. T. Y. Lam and A. Leroy. Wedderburn polynomials over division rings, I. J. Pure Appl. Algebra, 186(1):43–76, 2004. doi:10.1016/S0022-4049(03)00125-7.
  16. J. Delenclos and A. Leroy. Noncommutative symmetric functions and W-polynomials. J. Algebra Appl., 6(5):815–837, 2007. doi:10.1142/S021949880700251X.
  17. Wedderburn polynomials over division rings, II. In S. P. S. K. Jain, editor, Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications, volume 456 of Contemp. Math., pages 73–98. American Mathematical Society, Providence, RI, 2008. doi:10.1090/conm/456/08885.
  18. S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, New York, NY, revised 3rd edition, 2002. doi:10.1007/978-1-4613-0041-0.
  19. R. Lidl and H. Niederreiter. Finite Fields. Number 20 in Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1997. doi:10.1017/CBO9780511525926.
  20. A new perspective of cyclicity in convolutional codes. IEEE Trans. Inform. Theory, 62:2702–2706, 2016. doi:10.1109/TIT.2016.2538264.
  21. Dual skew codes from annihilators: Transpose Hamming ring extensions. Contemp. Math., 727:131–148, 2019. doi:10.1090/conm/727.
  22. T. Y. Lam and A. Leroy. Principal one-sided ideals in Ore polynomial rings. Contemp. Math., 259:333–352, 2000. doi:10.1090/conm/259.
  23. An Introduction to Noncommutative Noetherian Rings, volume 61 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2 edition, 2004. doi:10.1017/CBO9780511841699.
  24. Decoding Reed–Solomon skew-differential codes. IEEE Trans. Inform. Theory, 67(12):7891–7903, 2021. doi:10.1109/TIT.2021.3117083.
  25. Computing the bound of an Ore polynomial. Applications to factorization. J. Symbolic Comput., 92:269–297, 2019. doi:10.1016/j.jsc.2018.04.018.
  26. M. Grassl. Bounds on the minimum distance of linear codes and quantum codes [online]. URL: http://www.codetables.de [cited 16th November 2023].
  27. W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511807077.

Summary

We haven't generated a summary for this paper yet.