Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BED: Bi-Encoder-Decoder Model for Canonical Relation Extraction (2312.07088v1)

Published 12 Dec 2023 in cs.CL and cs.AI

Abstract: Canonical relation extraction aims to extract relational triples from sentences, where the triple elements (entity pairs and their relationship) are mapped to the knowledge base. Recently, methods based on the encoder-decoder architecture are proposed and achieve promising results. However, these methods cannot well utilize the entity information, which is merely used as augmented training data. Moreover, they are incapable of representing novel entities, since no embeddings have been learned for them. In this paper, we propose a novel framework, Bi-Encoder-Decoder (BED), to solve the above issues. Specifically, to fully utilize entity information, we employ an encoder to encode semantics of this information, leading to high-quality entity representations. For novel entities, given a trained entity encoder, their representations can be easily generated. Experimental results on two datasets show that, our method achieves a significant performance improvement over the previous state-of-the-art and handle novel entities well without retraining.

Summary

We haven't generated a summary for this paper yet.