Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Layered Randomized Quantization for Communication-Efficient and Privacy-Preserving Distributed Learning (2312.07060v1)

Published 12 Dec 2023 in cs.DC

Abstract: Next-generation wireless networks, such as edge intelligence and wireless distributed learning, face two critical challenges: communication efficiency and privacy protection. In this work, our focus is on addressing these issues in a distributed learning framework. We consider a new approach that simultaneously achieves communication efficiency and privacy protection by exploiting the privacy advantage offered by quantization. Specifically, we use a quantization scheme called \textbf{Gau}ssian \textbf{L}ayered \textbf{R}andomized \textbf{Q}uantization (Gau-LRQ) that compresses the raw model gradients using a layer multishift coupler. By adjusting the parameters of Gau-LRQ, we shape the quantization error to follow the expected Gaussian distribution, thus ensuring client-level differential privacy (CLDP). We demonstrate the effectiveness of our proposed Gau-LRQ in the distributed stochastic gradient descent (SGD) framework and theoretically quantify the trade-offs between communication, privacy, and convergence performance. We further improve the convergence performance by enabling dynamic private budget and quantization bit allocation. We achieve this by using an optimization formula that minimizes convergence error subject to the privacy budget constraint. We evaluate our approach on multiple datasets, including MNIST, CIFAR-10, and CIFAR-100, and show that our proposed method outperforms the baselines in terms of learning performance under various privacy constraints. Moreover, we observe that dynamic privacy allocation yields additional accuracy improvements for the models compared to the fixed scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge intelligence: The confluence of edge computing and artificial intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–7469, 2020.
  2. Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-efficient distributed deep learning: A comprehensive survey,” arXiv preprint arXiv:2003.06307, 2020.
  3. Z. Tao and Q. Li, “esgd: Communication efficient distributed deep learning on the edge,” in USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.
  4. L. Zhu and S. Han, “Deep leakage from gradients,” in Federated learning.   Springer, 2020, pp. 17–31.
  5. M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, 2015, pp. 1322–1333.
  6. M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning,” in 2019 IEEE symposium on security and privacy (SP).   IEEE, 2019, pp. 739–753.
  7. D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-efficient sgd via gradient quantization and encoding,” Advances in Neural Information Processing Systems, vol. 30, pp. 1709–1720, 2017.
  8. D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-sgd: Distributed sgd with quantization, sparsification, and local computations,” arXiv preprint arXiv:1906.02367, 2019.
  9. G. Nadiradze, A. Sabour, P. Davies, S. Li, and D. Alistarh, “Asynchronous decentralized sgd with quantized and local updates,” Advances in Neural Information Processing Systems, vol. 34, pp. 6829–6842, 2021.
  10. C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy.” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–407, 2014.
  11. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,” in proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 1175–1191.
  12. H. Zong, Q. Wang, X. Liu, Y. Li, and Y. Shao, “Communication reducing quantization for federated learning with local differential privacy mechanism,” in 2021 IEEE/CIC International Conference on Communications in China (ICCC).   IEEE, 2021, pp. 75–80.
  13. N. Mohammadi, J. Bai, Q. Fan, Y. Song, Y. Yi, and L. Liu, “Differential privacy meets federated learning under communication constraints,” IEEE Internet of Things Journal, vol. 9, no. 22, pp. 22 204–22 219, 2021.
  14. N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan, “cpsgd: Communication-efficient and differentially-private distributed sgd,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  15. N. Agarwal, P. Kairouz, and Z. Liu, “The skellam mechanism for differentially private federated learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 5052–5064, 2021.
  16. S. Amiri, A. Belloum, S. Klous, and L. Gommans, “Compressive differentially private federated learning through universal vector quantization,” in AAAI Workshop on Privacy-Preserving Artificial Intelligence, 2021, pp. 2–9.
  17. Q. Li, R. Heusdens, and M. G. Christensen, “Communication efficient privacy-preserving distributed optimization using adaptive differential quantization,” Signal Processing, p. 108456, 2022.
  18. G. Yan, T. Li, K. Wu, and L. Song, “Killing two birds with one stone: Quantization achieves privacy in distributed learning,” arXiv preprint arXiv:2304.13545, 2023.
  19. Y. Youn, Z. Hu, J. Ziani, and J. Abernethy, “Randomized quantization is all you need for differential privacy in federated learning,” arXiv preprint arXiv:2306.11913, 2023.
  20. D. B. Wilson, “Layered multishift coupling for use in perfect sampling algorithms (with a primer on cftp),” Monte Carlo Methods 26 (2000): 141-176., vol. 26, pp. 141–176, 2000.
  21. M. Hegazy and C. T. Li, “Randomized quantization with exact error distribution,” IEEE Information Theory Workshop (ITW), p. 31, 2022.
  22. X. Y. Gong M, Feng J, “Privacy-enhanced multi-party deep learning.” Neural Networks, vol. 121, pp. 484–496, 2020.
  23. J. Lee and D. Kifer, “Concentrated differentially private gradient descent with adaptive per-iteration privacy budget,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1656–1665.
  24. S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A distributed synchronous sgd algorithm with global top-k sparsification for low bandwidth networks,” in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).   IEEE, 2019, pp. 2238–2247.
  25. D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient federated learning with sketching,” in International Conference on Machine Learning.   PMLR, 2020, pp. 8253–8265.
  26. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics.   PMLR, 2017, pp. 1273–1282.
  27. J. Zhang and O. Simeone, “Lagc: Lazily aggregated gradient coding for straggler-tolerant and communication-efficient distributed learning,” IEEE transactions on neural networks and learning systems, vol. 32, no. 3, pp. 962–974, 2020.
  28. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 308–318.
  29. K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor, “Federated learning with differential privacy: Algorithms and performance analysis,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.
  30. S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communications: Motivation, opportunities, and challenges,” IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.
  31. P. Kairouz, Z. Liu, and T. Steinke, “The distributed discrete gaussian mechanism for federated learning with secure aggregation,” in International Conference on Machine Learning.   PMLR, 2021, pp. 5201–5212.
  32. S. Xiong, A. D. Sarwate, and N. B. Mandayam, “Randomized requantization with local differential privacy,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2016, pp. 2189–2193.
  33. J. A. Jonkman, T. Sherson, and R. Heusdens, “Quantisation effects in distributed optimisation,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2018, pp. 3649–3653.
  34. P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with adversaries: Byzantine tolerant gradient descent,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 118–128.
  35. D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed learning: Towards optimal statistical rates,” in International Conference on Machine Learning.   PMLR, 2018, pp. 5650–5659.
  36. F. Zhou and G. Cong, “On the convergence properties of a k-step averaging stochastic gradient descent algorithm for nonconvex optimization,” in Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018, pp. 3219–3227.
  37. L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.
  38. H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, “Doublesqueeze: Parallel stochastic gradient descent with double-pass error-compensated compression,” in International Conference on Machine Learning.   PMLR, 2019, pp. 6155–6165.
  39. G. Yan, T. Li, S.-L. Huang, T. Lan, and L. Song, “Ac-sgd: Adaptively compressed sgd for communication-efficient distributed learning,” IEEE Journal on Selected Areas in Communications, vol. 40, pp. 2678–2693, 2022.
  40. R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A client level perspective,” arXiv preprint arXiv:1712.07557, 2017.
  41. A. Cheng, P. Wang, X. S. Zhang, and J. Cheng., “Differentially private federated learning with local regularization and sparsification.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10 122–10 131, 2022.
  42. L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Transactions on Communication Technology, vol. 12, no. 4, pp. 162–165, 1964.
  43. R. M. Gray and T. G. Stockham, “Dithered quantizers,” IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 805–812, 1993.
  44. N. Paladi, M. Tiloca, P. N. Bideh, and M. Hell, “On-demand key distribution for cloud networks.” In 24th Conference on Innovation in Clouds, Internet and Networks and Workshops, 2021.
  45. X. Zhang, X. Chen, M. Hong, Z. S. Wu, and J. Yi, “Understanding clipping for federated learning: Convergence and client-level differential privacy,” International Conference on Machine Learning, 2022.
  46. G. Yan, S.-L. Huang, T. Lan, and L. Song, “Dq-sgd: Dynamic quantization in sgd for communication-efficient distributed learning,” in 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS).   IEEE, 2021, pp. 136–144.
Citations (6)

Summary

We haven't generated a summary for this paper yet.