Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyper-Restormer: A General Hyperspectral Image Restoration Transformer for Remote Sensing Imaging (2312.07016v1)

Published 12 Dec 2023 in eess.IV

Abstract: The deep learning model Transformer has achieved remarkable success in the hyperspectral image (HSI) restoration tasks by leveraging Spectral and Spatial Self-Attention (SA) mechanisms. However, applying these designs to remote sensing (RS) HSI restoration tasks, which involve far more spectrums than typical HSI (e.g., ICVL dataset with 31 bands), presents challenges due to the enormous computational complexity of using Spectral and Spatial SA mechanisms. To address this problem, we proposed Hyper-Restormer, a lightweight and effective Transformer-based architecture for RS HSI restoration. First, we introduce a novel Lightweight Spectral-Spatial (LSS) Transformer Block that utilizes both Spectral and Spatial SA to capture long-range dependencies of input features map. Additionally, we employ a novel Lightweight Locally-enhanced Feed-Forward Network (LLFF) to further enhance local context information. Then, LSS Transformer Blocks construct a Single-stage Lightweight Spectral-Spatial Transformer (SLSST) that cleverly utilizes the low-rank property of RS HSI to decompose the feature maps into basis and abundance components, enabling Spectral and Spatial SA with low computational cost. Finally, the proposed Hyper-Restormer cascades several SLSSTs in a stepwise manner to progressively enhance the quality of RS HSI restoration from coarse to fine. Extensive experiments were conducted on various RS HSI restoration tasks, including denoising, inpainting, and super-resolution, demonstrating that the proposed Hyper-Restormer outperforms other state-of-the-art methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Y. Wang, J. Peng, Q. Zhao, Y. Leung, X.-L. Zhao, and D. Meng, “Hyperspectral image restoration via total variation regularized low-rank tensor decomposition,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 4, pp. 1227–1243, 2017.
  2. L. Zhuang and J. M. Bioucas-Dias, “Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 3, pp. 730–742, 2018.
  3. W. He, Q. Yao, C. Li, N. Yokoya, and Q. Zhao, “Non-local meets global: An integrated paradigm for hyperspectral denoising,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6868–6877.
  4. O. Sidorov and J. Yngve Hardeberg, “Deep hyperspectral prior: Single-image denoising, inpainting, super-resolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019, pp. 0–0.
  5. T. Bodrito, A. Zouaoui, J. Chanussot, and J. Mairal, “A trainable spectral-spatial sparse coding model for hyperspectral image restoration,” Advances in Neural Information Processing Systems, vol. 34, pp. 5430–5442, 2021.
  6. Z. Kan, S. Li, M. Hou, L. Fang, and Y. Zhang, “Attention-based octave network for hyperspectral image denoising,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 1089–1102, 2021.
  7. J. Peng, H. Wang, X. Cao, X. Liu, X. Rui, and D. Meng, “Fast noise removal in hyperspectral images via representative coefficient total variation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2022.
  8. M. Li, Y. Fu, and Y. Zhang, “Spatial-spectral transformer for hyperspectral image denoising,” arXiv preprint arXiv:2211.14090, 2022.
  9. Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 1205–1218, 2018.
  10. K. Wei, Y. Fu, and H. Huang, “3-d quasi-recurrent neural network for hyperspectral image denoising,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 363–375, 2020.
  11. X. Cao, X. Fu, C. Xu, and D. Meng, “Deep spatial-spectral global reasoning network for hyperspectral image denoising,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  12. D. Cerra, R. Müller, and P. Reinartz, “Unmixing-based denoising for destriping and inpainting of hyperspectral images,” in 2014 IEEE Geoscience and Remote Sensing Symposium.   IEEE, 2014, pp. 4620–4623.
  13. W. He, H. Zhang, H. Shen, and L. Zhang, “Hyperspectral image denoising using local low-rank matrix recovery and global spatial–spectral total variation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 3, pp. 713–729, 2018.
  14. C.-H. Lin, Y.-C. Lin, and P.-W. Tang, “Admm-adam: A new inverse imaging framework blending the advantages of convex optimization and deep learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2021.
  15. S. Mei, X. Yuan, J. Ji, Y. Zhang, S. Wan, and Q. Du, “Hyperspectral image spatial super-resolution via 3d full convolutional neural network,” Remote Sensing, vol. 9, no. 11, p. 1139, 2017.
  16. Y. Li, L. Zhang, C. Dingl, W. Wei, and Y. Zhang, “Single hyperspectral image super-resolution with grouped deep recursive residual network,” in 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM).   IEEE, 2018, pp. 1–4.
  17. J. Li, R. Cui, B. Li, R. Song, Y. Li, Y. Dai, and Q. Du, “Hyperspectral image super-resolution by band attention through adversarial learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 6, pp. 4304–4318, 2020.
  18. J. Jiang, H. Sun, X. Liu, and J. Ma, “Learning spatial-spectral prior for super-resolution of hyperspectral imagery,” IEEE Transactions on Computational Imaging, vol. 6, pp. 1082–1096, 2020.
  19. T.-H. Lin and C.-H. Lin, “Single hyperspectral image super-resolution using admm-adam theory,” in IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2022, pp. 1756–1759.
  20. X.-H. Han, B. Shi, and Y. Zheng, “Ssf-cnn: Spatial and spectral fusion with cnn for hyperspectral image super-resolution,” in 2018 25th IEEE International Conference on Image Processing (ICIP).   IEEE, 2018, pp. 2506–2510.
  21. Y. Li, J. Hu, X. Zhao, W. Xie, and J. Li, “Hyperspectral image super-resolution using deep convolutional neural network,” Neurocomputing, vol. 266, pp. 29–41, 2017.
  22. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  23. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10 012–10 022.
  24. Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li, “Uformer: A general u-shaped transformer for image restoration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 683–17 693.
  25. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer: Efficient transformer for high-resolution image restoration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5728–5739.
  26. Y. Cai, J. Lin, X. Hu, H. Wang, X. Yuan, Y. Zhang, R. Timofte, and L. Van Gool, “Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 502–17 511.
  27. Y. Cai, J. Lin, Z. Lin, H. Wang, Y. Zhang, H. Pfister, R. Timofte, and L. Van Gool, “Mst++: Multi-stage spectral-wise transformer for efficient spectral reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 745–755.
  28. D. Yu, Q. Li, X. Wang, Z. Zhang, Y. Qian, and C. Xu, “Dstrans: Dual-stream transformer for hyperspectral image restoration,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 3739–3749.
  29. Z. Lai and Y. Fu, “Mixed attention network for hyperspectral image denoising,” arXiv preprint arXiv:2301.11525, 2023.
  30. B. Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral signal from natural rgb images,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14.   Springer, 2016, pp. 19–34.
  31. F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2241–2253, 2010.
  32. A. Chakrabarti and T. Zickler, “Statistics of real-world hyperspectral images,” in CVPR 2011.   IEEE, 2011, pp. 193–200.
  33. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, Aug. 2007.
  34. D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9446–9454.
  35. J. D′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPTErrico, “Inpainting nan elements in 3-d,” MATLAB Central File Exchange. MathWorks, Natick, MA, USA, 2008, [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/21214-inpainting-nan-elements-in-3-d.
  36. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
  37. W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.
  38. J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354–379, 2012.
  39. C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan, “A fast hyperplane-based minimum-volume enclosing simplex algorithm for blind hyperspectral unmixing,” IEEE Transactions on Signal Processing, vol. 64, no. 8, pp. 1946–1961, 2015.
  40. L. Chen, X. Chu, X. Zhang, and J. Sun, “Simple baselines for image restoration,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VII.   Springer, 2022, pp. 17–33.
  41. D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint arXiv:1606.08415, 2016.
  42. AVIRIS Free Standard Data Products. [Online]. Available: http://aviris.jpl.nasa.gov/html/aviris.freedata.html
  43. “Urban hyperspectral data cube,” [Online]. Available: https://erdc-library.erdc.dren.mil/jspui/handle/11681/2925.
  44. M. K. Pal and A. Porwal, “Destriping of Hyperion images using low-pass-filter and local-brightness-normalization,” in Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, Jul. 26-31, 2015, pp. 3509–3512.
  45. “Hyperion Bhilwara hyperspectral data cube,” [Online]. Available: https://earthexplorer.usgs.gov/.
  46. “Washington DC Mall hyperspectral data cube,” [Online]. Available: https://engineering.purdue.edu∼biehl/MultiSpec/hyperspectral.html.
  47. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017.
  48. X. Liu, H. Shen, Q. Yuan, X. Lu, and C. Zhou, “A universal destriping framework combining 1-d and 2-d variational optimization methods,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 808–822, 2017.
  49. F. A. Kruse, A. Lefkoff, J. Boardman, K. Heidebrecht, A. Shapiro, P. Barloon, and A. Goetz, “The spectral image processing system (sips)—interactive visualization and analysis of imaging spectrometer data,” Remote Sensing of Environment, vol. 44, no. 2-3, pp. 145–163, 1993.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yo-Yu Lai (1 paper)
  2. Chia-Hsiang Lin (15 papers)
  3. Zi-Chao Leng (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.