Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Photonic spin Hall effect in Haldane model materials (2312.07013v2)

Published 12 Dec 2023 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: The photonic spin Hall effect of light beams reflected from the surfaces of various two-dimensional hexagonal crystalline structures, considering their associated time-reversal $\mathcal{T}$ and inversion $\mathcal{I}$ symmetries, is investigated. Employing the Haldane model with tunable parameters as a generic model, we examine the longitudinal and transverse spin-separations of the reflected beam in both topological non-trivial and trivial systems. The study reveals that the sign switching of the PSHE in these materials is attributed to the non-trivial and trivial topology. By manipulating the interplay between spin-orbit coupling and external electric fields, we demonstrate topological phase transitions in buckled Xene monolayer materials through the photonic spin Hall effect. Different behaviors of the photonic spin Hall effect are observed in various topological phases within these materials. Additionally, we explore the reflected spin and valley-polarized spatial shifts in monolayer transition metal dichalcogenides. The photonic spin Hall effect in buckled Xene monolayer materials and transition metal dichalcogenides is highly influenced by the spin and valley degrees of freedom of charge carriers, offering a promising avenue to explore spintronics and valleytronics in these hexagonal materials. We propose that the photonic spin Hall effect in Haldane materials can serve as a metrological tool for optical parameter characterization and as a promising method for determining Chern numbers and topological phase transitions through direct optical weak measurement techniques.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. F. D. M. Haldane, Physical Review Letters 61, 2015 (1988a).
  2. D. Pesin and A. H. MacDonald, Nature Materials 11, 409 (2012).
  3. K.-i. Sasaki and R. Saito, Progress of Theoretical Physics Supplement 176, 253 (2008).
  4. W. J. d. M. Kort-Kamp, Physical Review Letters 119, 147401 (2017).
  5. M. Shah, Journal of Physics D: Applied Physics 55, 105105 (2021).
  6. F. D. M. Haldane, Physical Review Letters 61, 2015 (1988b).
  7. D. Vanderbilt, Berry phases in electronic structure theory: electric polarization, orbital magnetization and topological insulators (Cambridge University Press, 2018).
  8. M. Shah, Optical Materials Express 12, 421 (2022).
  9. M. Ezawa, Physical Review B 86, 161407 (2012).
  10. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
  11. K. F. Mak and J. Shan, Nature Photonics 10, 216 (2016).
  12. H. Rostami and R. Asgari, Phys. Rev. B 89, 115413 (2014).
  13. O. Hosten and P. Kwiat, Science 319, 787 (2008).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.