Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal results on degree powers in some classes of graphs (2312.07005v1)

Published 12 Dec 2023 in math.CO

Abstract: Let $G$ be a simple graph of order $n$ with degree sequence $(d_1,d_2,\cdots,d_n)$. For an integer $p>1$, let $e_p(G)=\sum_{i=1}n d{p}_i$ and let $ex_p(n,H)$ be the maximum value of $e_p(G)$ among all graphs with $n$ vertices that do not contain $H$ as a subgraph (known as $H$-free graphs). Caro and Yuster proposed the problem of determining the exact value of $ex_2(n,C_4)$, where $C_4$ is the cycle of length $4$. In this paper, we show that if $G$ is a $C_4$-free graph having $n\geq 4$ vertices and $m\leq \lfloor 3(n-1)/2\rfloor$ edges and no isolated vertices, then $e_p(G)\leq e_p(F_n)$, with equality if and only if $G$ is the friendship graph $F_n$. This yields that for $n\geq 4$, $ex_p(n,\mathcal{C}*)=e_p(F_n)$ and $F_n$ is the unique extremal graph, which is an improved complement of Caro and Yuster's result on $ex_p(n,\mathcal{C}*)$, where $\mathcal{C}*$ denotes the family of cycles of even lengths. We also determine the maximum value of $e_p(\cdot)$ among all minimally $t$-(edge)-connected graphs with small $t$ or among all $k$-degenerate graphs, and characterize the corresponding extremal graphs. A key tool in our approach is majorization.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com