Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear independence of series related to the Thue--Morse sequence along powers (2312.06981v1)

Published 12 Dec 2023 in math.NT, cs.FL, and math.CO

Abstract: The Thue--Morse sequence ${t(n)}{n\geqslant 1}$ is the indicator function of the parity of the number of ones in the binary expansion of positive integers $n$, where $t(n)=1$ (resp. $=0$) if the binary expansion of $n$ has an odd (resp. even) number of ones. In this paper, we generalize a recent result of E.~Miyanohara by showing that, for a fixed Pisot or Salem number $\beta>\sqrt{\varphi}=1.272019649\ldots$, the set of the numbers $$ 1,\quad \sum{n\geqslant 1}\frac{t(n)}{\beta{n}},\quad \sum_{n\geqslant 1}\frac{t(n2)}{\beta{n}},\quad \dots, \quad \sum_{n\geqslant 1}\frac{t(nk)}{\beta{n}},\quad \dots $$ is linearly independent over the field $\mathbb{Q}(\beta)$, where $\varphi:=(1+\sqrt{5})/2$ is the golden ratio. Our result implies that for any $k\geqslant 1$ and for any $a_1,a_2,\ldots,a_k\in\mathbb{Q}(\beta)$, not all zero, the sequence {$a_1t(n)+a_2t(n2)+\cdots+a_kt(nk)}_{n\geqslant 1}$ cannot be eventually periodic.

Summary

We haven't generated a summary for this paper yet.