Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiplexed control scheme for scalable quantum information processing with superconducting qubits (2312.06911v1)

Published 12 Dec 2023 in quant-ph

Abstract: The advancement of scalable quantum information processing relies on the accurate and parallel manipulation of a vast number of qubits, potentially reaching into the millions. Superconducting qubits, traditionally controlled through individual circuitry, currently face a formidable scalability challenge due to the excessive use of wires. This challenge is nearing a critical point where it might soon surpass the capacities of on-chip routing, I/O packaging, testing platforms, and economically feasible solutions. Here we introduce a multiplexed control scheme that efficiently utilizes shared control lines for operating multiple qubits and couplers. By integrating quantum hardware-software co-design, our approach utilizes advanced techniques like frequency multiplexing and individual tuning. This enables simultaneous and independent execution of single- and two-qubit gates with significantly simplified wiring. This scheme has the potential to diminish the number of control lines by one to two orders of magnitude in the near future, thereby substantially enhancing the scalability of superconducting quantum processors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023). URL https://doi.org/10.1038/s41586-022-05434-1.
  2. Cao, S. et al. Generation of genuine entanglement up to 51 superconducting qubits. Nature 619, 738–742 (2023).
  3. Xu, S. et al. Digital simulation of projective non-abelian anyons with 68 superconducting qubits. Chinese Physics Letters (2023).
  4. Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023). URL https://doi.org/10.1038/s41586-023-06096-3.
  5. Asaad, S. et al. Independent, extensible control of same-frequency superconducting qubits by selective broadcasting. npj Quantum Information 2, 16029 (2016). URL https://doi.org/10.1038/npjqi.2016.29.
  6. Zhao, P. et al. Baseband control of superconducting qubits with shared microwave drives. Phys. Rev. Appl. 19, 054050 (2023). URL https://link.aps.org/doi/10.1103/PhysRevApplied.19.054050.
  7. The quantum socket and demuxyz-based gates with superconducting qubits. arXiv preprint arXiv:2211.00143 (2022).
  8. Lecocq, F. et al. Control and readout of a superconducting qubit using a photonic link. Nature 591, 575–579 (2021). URL https://doi.org/10.1038/s41586-021-03268-x.
  9. Koch, J. et al. Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007). URL https://link.aps.org/doi/10.1103/PhysRevA.76.042319.
  10. Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018). URL https://link.aps.org/doi/10.1103/PhysRevApplied.10.054062.
  11. Fluxonium: Single cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009). URL https://www.science.org/doi/abs/10.1126/science.1175552. eprint https://www.science.org/doi/pdf/10.1126/science.1175552.
  12. Nguyen, L. B. et al. High-coherence fluxonium qubit. Phys. Rev. X 9, 041041 (2019). URL https://link.aps.org/doi/10.1103/PhysRevX.9.041041.
  13. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012). URL https://link.aps.org/doi/10.1103/PhysRevA.86.032324.
  14. Improving wafer-scale josephson junction resistance variation in superconducting quantum coherent circuits. Superconductor Science and Technology 33, 06LT02 (2020). URL https://dx.doi.org/10.1088/1361-6668/ab8617.
  15. Osman, A. et al. Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits. Applied Physics Letters 118, 064002 (2021). URL https://doi.org/10.1063/5.0037093. eprint https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0037093/14545882/064002_1_online.pdf.
  16. Zhang, E. J. et al. High-performance superconducting quantum processors via laser annealing of transmon qubits. Science Advances 8, eabi6690 (2022). URL https://www.science.org/doi/abs/10.1126/sciadv.abi6690. eprint https://www.science.org/doi/pdf/10.1126/sciadv.abi6690.
  17. Efficient z𝑧zitalic_z gates for quantum computing. Phys. Rev. A 96, 022330 (2017). URL https://link.aps.org/doi/10.1103/PhysRevA.96.022330.
  18. Han, Z. et al. Multi-level variational spectroscopy using a programmable quantum simulator (2023). eprint 2306.02110.
  19. Xu, Y. et al. High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett. 125, 240503 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.125.240503.
  20. Collodo, M. C. et al. Implementation of conditional phase gates based on tunable z⁢z𝑧𝑧zzitalic_z italic_z interactions. Phys. Rev. Lett. 125, 240502 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.125.240502.
  21. Coupler-Assisted Controlled-Phase Gate with Enhanced Adiabaticity. Physical Review Applied 16, 054020 (2021). URL https://link.aps.org/doi/10.1103/PhysRevApplied.16.054020.
  22. Ficheux, Q. et al. Fast logic with slow qubits: Microwave-activated controlled-z gate on low-frequency fluxoniums. Phys. Rev. X 11, 021026 (2021). URL https://link.aps.org/doi/10.1103/PhysRevX.11.021026.
  23. Ding, L. et al. High-fidelity, frequency-flexible two-qubit fluxonium gates with a transmon coupler. Phys. Rev. X 13, 031035 (2023). URL https://link.aps.org/doi/10.1103/PhysRevX.13.031035.
  24. Kono, S. et al. Breaking the trade-off between fast control and long lifetime of a superconducting qubit. Nature Communications 11, 3683 (2020). URL https://doi.org/10.1038/s41467-020-17511-y.
  25. Acharya, R. et al. Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer. Nature Electronics 6, 900–909 (2023). URL https://doi.org/10.1038/s41928-023-01033-8.
  26. Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019). URL https://doi.org/10.1140/epjqt/s40507-019-0072-0.
  27. Novel multiplexer topologies based on all-resonator structures. IEEE Transactions on Microwave Theory and Techniques 61, 3838–3845 (2013).
  28. Microstrip filters for RF/microwave applications (John Wiley & Sons, 2004).
  29. Mirhosseini, M. et al. Superconducting metamaterials for waveguide quantum electrodynamics. Nature communications 9, 3706 (2018).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com