Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tearing down spacetime with quantum disentanglement (2312.06803v3)

Published 11 Dec 2023 in hep-th

Abstract: A longstanding enigma within AdS/CFT concerns the entanglement entropy of holographic quantum fields in Rindler space. The vacuum of a quantum field in Minkowski spacetime can be viewed as an entangled thermofield double of two Rindler wedges at a temperature $T=1/2\pi$. We can gradually disentangle the state by lowering this temperature, and the entanglement entropy should vanish in the limit $T\to 0$ to the Boulware vacuum. However, holography yields a non-zero entanglement entropy at arbitrarily low $T$, since the bridge in the bulk between the two wedges retains a finite width. We show how this is resolved by bulk quantum effects of the same kind that affect the entropy of near-extremal black holes. Specifically, a Weyl transformation maps the holographic Boulware states to near-extremal hyperbolic black holes. A reduction to an effective two-dimensional theory captures the large quantum fluctuations in the geometry of the bridge, which bring down to zero the density of entangled states in the Boulware vacuum. Using another Weyl transformation, we construct unentangled Boulware states in de Sitter space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 04 (2003) 021, arXiv:hep-th/0106112.
  2. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.
  3. M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav. 42 (2010) 2323–2329, arXiv:1005.3035 [hep-th].
  4. R. Emparan, “AdS / CFT duals of topological black holes and the entropy of zero energy states,” JHEP 06 (1999) 036, arXiv:hep-th/9906040.
  5. B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van Raamsdonk, “Rindler Quantum Gravity,” Class. Quant. Grav. 29 (2012) 235025, arXiv:1206.1323 [hep-th].
  6. L. V. Iliesiu and G. J. Turiaci, “The statistical mechanics of near-extremal black holes,” JHEP 05 (2021) 145, arXiv:2003.02860 [hep-th].
  7. W. G. Unruh, “Notes on black hole evaporation,” Phys. Rev. D 14 (1976) 870.
  8. S. Doplicher and R. Longo, “Standard and split inclusions of von Neumann algebras,” Invent. Math. 75 (1984) 493–536.
  9. Springer Science & Business Media, 2012.
  10. L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, “A Quantum Source of Entropy for Black Holes,” Phys. Rev. D 34 (1986) 373–383.
  11. M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71 (1993) 666–669, arXiv:hep-th/9303048.
  12. H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 05 (2011) 036, arXiv:1102.0440 [hep-th].
  13. C. Eling, Y. Oz, and S. Theisen, “Entanglement and Thermal Entropy of Gauge Fields,” JHEP 11 (2013) 019, arXiv:1308.4964 [hep-th].
  14. A. Goel, H. T. Lam, G. J. Turiaci, and H. Verlinde, “Expanding the Black Hole Interior: Partially Entangled Thermal States in SYK,” JHEP 02 (2019) 156, arXiv:1807.03916 [hep-th].
  15. V. Balasubramanian, A. Lawrence, J. M. Magan, and M. Sasieta, “Microscopic origin of the entropy of black holes in general relativity,” arXiv:2212.02447 [hep-th].
  16. V. Balasubramanian, A. Lawrence, J. M. Magan, and M. Sasieta, “Microscopic origin of the entropy of astrophysical black holes,” arXiv:2212.08623 [hep-th].
  17. S. Antonini, M. Sasieta, and B. Swingle, “Cosmology from random entanglement,” arXiv:2307.14416 [hep-th].
  18. J. M. Magan et al, “to appear,”.
  19. J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space,” PTEP 2016 no. 12, (2016) 12C104, arXiv:1606.01857 [hep-th].
  20. D. Stanford and E. Witten, “Fermionic Localization of the Schwarzian Theory,” JHEP 10 (2017) 008, arXiv:1703.04612 [hep-th].
  21. D. Bagrets, A. Altland, and A. Kamenev, “Sachdev–Ye–Kitaev model as Liouville quantum mechanics,” Nucl. Phys. B 911 (2016) 191–205, arXiv:1607.00694 [cond-mat.str-el].
  22. T. G. Mertens, G. J. Turiaci, and H. L. Verlinde, “Solving the Schwarzian via the Conformal Bootstrap,” JHEP 08 (2017) 136, arXiv:1705.08408 [hep-th].
  23. A. Kitaev and S. J. Suh, “Statistical mechanics of a two-dimensional black hole,” JHEP 05 (2019) 198, arXiv:1808.07032 [hep-th].
  24. Z. Yang, “The Quantum Gravity Dynamics of Near Extremal Black Holes,” JHEP 05 (2019) 205, arXiv:1809.08647 [hep-th].
  25. A. Ghosh, H. Maxfield, and G. J. Turiaci, “A universal Schwarzian sector in two-dimensional conformal field theories,” JHEP 05 (2020) 104, arXiv:1912.07654 [hep-th].
  26. M. Heydeman, L. V. Iliesiu, G. J. Turiaci, and W. Zhao, “The statistical mechanics of near-BPS black holes,” J. Phys. A 55 no. 1, (2022) 014004, arXiv:2011.01953 [hep-th].
  27. J. Boruch, M. T. Heydeman, L. V. Iliesiu, and G. J. Turiaci, “BPS and near-BPS black holes in A⁢d⁢S5𝐴𝑑subscript𝑆5AdS_{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT and their spectrum in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” arXiv:2203.01331 [hep-th].
  28. L. V. Iliesiu, S. Murthy, and G. J. Turiaci, “Black hole microstate counting from the gravitational path integral,” arXiv:2209.13602 [hep-th].
  29. L. V. Iliesiu, S. Murthy, and G. J. Turiaci, “Revisiting the Logarithmic Corrections to the Black Hole Entropy,” arXiv:2209.13608 [hep-th].
  30. N. Banerjee and M. Saha, “Revisiting leading quantum corrections to near extremal black hole thermodynamics,” JHEP 07 (2023) 010, arXiv:2303.12415 [hep-th].
  31. D. Kapec, A. Sheta, A. Strominger, and C. Toldo, “Logarithmic Corrections to Kerr Thermodynamics,” arXiv:2310.00848 [hep-th].
  32. I. Rakic, M. Rangamani, and G. J. Turiaci, “Thermodynamics of the near-extremal Kerr spacetime,” arXiv:2310.04532 [hep-th].
  33. N. Banerjee, M. Saha, and S. Srinivasan, “Logarithmic corrections for near-extremal black holes,” arXiv:2311.09595 [hep-th].
  34. J. Preskill, P. Schwarz, A. D. Shapere, S. Trivedi, and F. Wilczek, “Limitations on the statistical description of black holes,” Mod. Phys. Lett. A 6 (1991) 2353–2362.
  35. J. L. F. Barbon and J. Martinez-Magan, “Spontaneous fragmentation of topological black holes,” JHEP 08 (2010) 031, arXiv:1005.4439 [hep-th].
  36. A. Buchel, “Gauge theories on hyperbolic spaces and dual wormhole instabilities,” Phys. Rev. D 70 (2004) 066004, arXiv:hep-th/0402174.
  37. P. Nayak, A. Shukla, R. M. Soni, S. P. Trivedi, and V. Vishal, “On the Dynamics of Near-Extremal Black Holes,” JHEP 09 (2018) 048, arXiv:1802.09547 [hep-th].
  38. D. Grumiller, W. Kummer, and D. V. Vassilevich, “Dilaton gravity in two-dimensions,” Phys. Rept. 369 (2002) 327–430, arXiv:hep-th/0204253.
  39. T. G. Mertens and G. J. Turiaci, “Solvable Models of Quantum Black Holes: A Review on Jackiw-Teitelboim Gravity,” arXiv:2210.10846 [hep-th].
  40. T. Faulkner, A. Lewkowycz, and J. Maldacena, “Quantum corrections to holographic entanglement entropy,” JHEP 11 (2013) 074, arXiv:1307.2892 [hep-th].
  41. N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 01 (2015) 073, arXiv:1408.3203 [hep-th].
  42. A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08 (2013) 090, arXiv:1304.4926 [hep-th].
  43. A. A. Migdal, “Gauge Transitions in Gauge and Spin Lattice Systems,” Sov. Phys. JETP 42 (1975) 743.
  44. A. A. Migdal, “Recursion Equations in Gauge Theories,” Sov. Phys. JETP 42 (1975) 413.
  45. A. A. Migdal, “Loop Equations and 1/N Expansion,” Phys. Rept. 102 (1983) 199–290.
  46. B. E. Rusakov, “Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds,” Mod. Phys. Lett. A 5 (1990) 693–703.
  47. D. S. Fine, “Quantum Yang-Mills on the two-sphere,” Commun. Math. Phys. 134 (1990) 273–292.
  48. D. S. Fine, “Quantum Yang-Mills on a Riemann surface,” Commun. Math. Phys. 140 (1991) 321–338.
  49. M. Blau and G. Thompson, “Quantum Yang-Mills theory on arbitrary surfaces,” Int. J. Mod. Phys. A 7 (1992) 3781–3806.
  50. E. Witten, “On quantum gauge theories in two-dimensions,” Commun. Math. Phys. 141 (1991) 153–209.
  51. E. Witten, “Two-dimensional gauge theories revisited,” J. Geom. Phys. 9 (1992) 303–368, arXiv:hep-th/9204083.
  52. S. Cordes, G. W. Moore, and S. Ramgoolam, “Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories,” Nucl. Phys. B Proc. Suppl. 41 (1995) 184–244, arXiv:hep-th/9411210.
  53. O. Ganor, J. Sonnenschein, and S. Yankielowicz, “The String theory approach to generalized 2-D Yang-Mills theory,” Nucl. Phys. B 434 (1995) 139–178, arXiv:hep-th/9407114.
  54. A. Tseytfin, “On gauge theories for non-semisimple groups,” Nuclear Physics B 450 no. 1-2, (Sep, 1995) 231–250. https://doi.org/10.1016%2F0550-3213%2895%2900327-o.
  55. C. P. Constantinidis, O. Piguet, and A. Perez, “Quantization of the Jackiw-Teitelboim model,” Phys. Rev. D 79 (2009) 084007, arXiv:0812.0577 [gr-qc].
  56. L. V. Iliesiu, S. S. Pufu, H. Verlinde, and Y. Wang, “An exact quantization of Jackiw-Teitelboim gravity,” JHEP 11 (2019) 091, arXiv:1905.02726 [hep-th].
  57. L. V. Iliesiu, “On 2D gauge theories in Jackiw-Teitelboim gravity,” arXiv:1909.05253 [hep-th].
  58. D. Kapec, R. Mahajan, and D. Stanford, “Matrix ensembles with global symmetries and ’t Hooft anomalies from 2d gauge theory,” JHEP 04 (2020) 186, arXiv:1912.12285 [hep-th].
  59. R. Camporesi, “Harmonic analysis and propagators on homogeneous spaces,” Phys. Rept. 196 (1990) 1–134.
  60. J. L. F. Barbon and J. M. Magan, “Fast Scramblers, Horizons and Expander Graphs,” JHEP 08 (2012) 016, arXiv:1204.6435 [hep-th].
  61. P. Candelas and J. S. Dowker, “Field theories on conformally related spsce-times: Some global considerations,” Phys. Rev. D 19 (1979) 2902.
  62. A. Almheiri and B. Kang, “Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes,” JHEP 10 (2016) 052, arXiv:1606.04108 [hep-th].
  63. H. Casini and M. Huerta, “Entanglement entropy for the n-sphere,” Phys. Lett. B 694 (2011) 167–171, arXiv:1007.1813 [hep-th].
  64. M. M. Caldarelli and D. Klemm, “Supersymmetry of Anti-de Sitter black holes,” Nucl. Phys. B 545 (1999) 434–460, arXiv:hep-th/9808097.
  65. S. L. Cacciatori and D. Klemm, “Supersymmetric AdS(4) black holes and attractors,” JHEP 01 (2010) 085, arXiv:0911.4926 [hep-th].
  66. N. Halmagyi, M. Petrini, and A. Zaffaroni, “BPS black holes in A⁢d⁢S4𝐴𝑑subscript𝑆4AdS_{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT from M-theory,” JHEP 08 (2013) 124, arXiv:1305.0730 [hep-th].
  67. A. Gnecchi and N. Halmagyi, “Supersymmetric black holes in A⁢d⁢S4𝐴𝑑subscript𝑆4AdS_{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT from very special geometry,” JHEP 04 (2014) 173, arXiv:1312.2766 [hep-th].
  68. F. Benini, K. Hristov, and A. Zaffaroni, “Exact microstate counting for dyonic black holes in AdS4,” Phys. Lett. B 771 (2017) 462–466, arXiv:1608.07294 [hep-th].
  69. A. Cabo-Bizet, V. I. Giraldo-Rivera, and L. A. Pando Zayas, “Microstate counting of AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT hyperbolic black hole entropy via the topologically twisted index,” JHEP 08 (2017) 023, arXiv:1701.07893 [hep-th].
  70. F. Azzurli, N. Bobev, P. M. Crichigno, V. S. Min, and A. Zaffaroni, “A universal counting of black hole microstates in AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT,” JHEP 02 (2018) 054, arXiv:1707.04257 [hep-th].
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com