Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where are NANOGrav's big black holes? (2312.06756v1)

Published 11 Dec 2023 in astro-ph.CO, astro-ph.HE, and gr-qc

Abstract: Multiple pulsar timing array (PTA) collaborations have recently reported the first detection of gravitational waves (GWs) of nanohertz frequencies. The signal is expected to be primarily sourced by inspiralling supermassive black hole binaries (SMBHBs) and these first results are broadly consistent with the expected GW spectrum from such a population. Curiously, the measured amplitude of the GW background in all announced results is a bit larger than theoretical predictions. In this work, we show that the amplitude of the stochastic gravitational wave background (SGWB) predicted from the present-day abundance of SMBHs derived from local scaling relations is significantly smaller than that measured by the PTAs. We demonstrate that this difference cannot be accounted for through changes in the merger history of SMBHs and that there is an upper limit to the boost to the characteristic strain from multiple merger events, due to the fact that they involve black holes of decreasing masses. If we require the current estimate of the black hole mass density -- equal to the integrated quasar luminosity function through the classic Soltan argument -- to be preserved, then the currently measured PTA result would imply that the typical total mass of SMBHs contributing to the background should be at least $\sim 3 \times 10{10} M_\odot$, a factor of $\sim 10$ larger than previously predicted. The required space density of such massive black holes corresponds to order $10$ $3 \times 10{10} M_\odot$ SMBHs within the volume accessible by stellar and gas dynamical SMBH measurements. By virtue of the GW signal being dominated by the massive end of the SMBH distribution, PTA measurements offer a unique window into such rare objects and complement existing electromagnetic observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. R. W. Hellings and G. S. Downs, “Upper limits on the isotropic gravitational radiation background from pulsar timing analysis.,” Astrophys. J. Lett. 265 (Feb., 1983) L39–L42.
  2. EPTA Collaboration, J. Antoniadis et al., “The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals,” arXiv:2306.16214 [astro-ph.HE].
  3. NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” Astrophys. J. Lett. 951 no. 1, (2023) L8, arXiv:2306.16213 [astro-ph.HE].
  4. D. J. Reardon et al., “Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951 no. 1, (2023) L6, arXiv:2306.16215 [astro-ph.HE].
  5. H. Xu et al., “Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I,” Res. Astron. Astrophys. 23 no. 7, (2023) 075024, arXiv:2306.16216 [astro-ph.HE].
  6. International Pulsar Timing Array Collaboration, G. Agazie et al., “Comparing recent PTA results on the nanohertz stochastic gravitational wave background,” arXiv:2309.00693 [astro-ph.HE].
  7. S. Burke-Spolaor et al., “The Astrophysics of Nanohertz Gravitational Waves,” Astron. Astrophys. Rev. 27 no. 1, (2019) 5, arXiv:1811.08826 [astro-ph.HE].
  8. J. Kormendy and D. Richstone, “Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei,” Annu. Rev. Astron. Astrophys. 33 (Jan., 1995) 581.
  9. D. Richstone, E. A. Ajhar, R. Bender, G. Bower, A. Dressler, S. M. Faber, et al., “Supermassive black holes and the evolution of galaxies.,” Nature (London) 385 no. 6701, (Oct., 1998) A14, arXiv:astro-ph/9810378 [astro-ph].
  10. M. C. Begelman, R. D. Blandford, and M. J. Rees, “Massive black hole binaries in active galactic nuclei,” Nature (London) 287 no. 5780, (Sept., 1980) 307–309.
  11. J. Kormendy and L. C. Ho, “Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies,” Annu. Rev. Astron. Astrophys. 51 no. 1, (Aug., 2013) 511–653, arXiv:1304.7762 [astro-ph.CO].
  12. N. J. McConnell and C.-P. Ma, “Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties,” Astrophys. J.  764 no. 2, (Feb., 2013) 184, arXiv:1211.2816 [astro-ph.CO].
  13. A. Marconi, G. Risaliti, R. Gilli, L. K. Hunt, R. Maiolino, and M. Salvati, “Local supermassive black holes, relics of active galactic nuclei and the X-ray background,” Mon. Not. R. Astron. Soc. 351 no. 1, (June, 2004) 169–185, arXiv:astro-ph/0311619 [astro-ph].
  14. M. Vika, S. P. Driver, A. W. Graham, and J. Liske, “The Millennium Galaxy Catalogue: the Mb⁢h𝑏ℎ{}_{bh}start_FLOATSUBSCRIPT italic_b italic_h end_FLOATSUBSCRIPT-Ls⁢p⁢h⁢e⁢r⁢o⁢i⁢d𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑{}_{spheroid}start_FLOATSUBSCRIPT italic_s italic_p italic_h italic_e italic_r italic_o italic_i italic_d end_FLOATSUBSCRIPT derived supermassive black hole mass function,” Mon. Not. R. Astron. Soc. 400 no. 3, (Dec., 2009) 1451–1460, arXiv:0908.2102 [astro-ph.CO].
  15. F. Shankar, D. H. Weinberg, and J. Miralda-Escudé, “Self-Consistent Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates, and the Mean Radiative Efficiency,” Astrophys. J.  690 no. 1, (Jan., 2009) 20–41, arXiv:0710.4488 [astro-ph].
  16. F. Shankar, “Black hole demography: from scaling relations to models,” Classical and Quantum Gravity 30 no. 24, (Dec., 2013) 244001, arXiv:1307.3289 [astro-ph.CO].
  17. A. Soltan, “Masses of quasars.,” Mon. Not. R. Astron. Soc. 200 (July, 1982) 115–122.
  18. A. Cavaliere, P. Morrison, and K. Wood, “On Quasar Evolution,” Astrophys. J.  170 (Dec., 1971) 223.
  19. T. A. Small and R. D. Blandford, “Quasar evolution and the growth of black holes.,” Mon. Not. R. Astron. Soc. 259 (Dec., 1992) 725–737.
  20. Q. Yu and S. Tremaine, “Observational constraints on growth of massive black holes,” Mon. Not. R. Astron. Soc. 335 no. 4, (Oct., 2002) 965–976, arXiv:astro-ph/0203082 [astro-ph].
  21. F. Shankar, D. H. Weinberg, and J. Miralda-Escudé, “Accretion-driven evolution of black holes: Eddington ratios, duty cycles and active galaxy fractions,” Mon. Not. R. Astron. Soc. 428 no. 1, (Jan., 2013) 421–446, arXiv:1111.3574 [astro-ph.CO].
  22. M. Tucci and M. Volonteri, “Constraining supermassive black hole evolution through the continuity equation,” Astron. Astrophys. 600 (2017) A64, arXiv:1603.00823 [astro-ph.GA].
  23. E. S. Phinney, “A Practical theorem on gravitational wave backgrounds,” arXiv:astro-ph/0108028.
  24. NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background,” Astrophys. J. Lett. 952 no. 2, (2023) L37, arXiv:2306.16220 [astro-ph.HE].
  25. J. Kormendy and R. Bender, “The Lvpropσ𝜎\sigmaitalic_σ88{}^{8}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPT Correlation for Elliptical Galaxies with Cores: Relation with Black Hole Mass,” Astrophys. J. Lett. 769 no. 1, (May, 2013) L5.
  26. J. Thomas, R. P. Saglia, R. Bender, P. Erwin, and M. Fabricius, “The Dynamical Fingerprint of Core Scouring in Massive Elliptical Galaxies,” Astrophys. J. 782 no. 1, (2014) 39, arXiv:1311.3783 [astro-ph.GA].
  27. J. Hlavacek-Larrondo, A. C. Fabian, A. C. Edge, and M. T. Hogan, “On the hunt for ultramassive black holes in brightest cluster galaxies,” Mon. Not. R. Astron. Soc. 424 no. 1, (July, 2012) 224–231, arXiv:1204.5759 [astro-ph.CO].
  28. T. Ebisuzaki, J. Makino, and S. K. Okumura, “Merging of two galaxies with central black holes,” Nature (London) 354 no. 6350, (Nov., 1991) 212–214.
  29. S. M. Faber, S. Tremaine, E. A. Ajhar, Y.-I. Byun, A. Dressler, K. Gebhardt, et al., “The Centers of Early-Type Galaxies with HST. IV. Central Parameter Relations.,” Astron. J. 114 (Nov., 1997) 1771, arXiv:astro-ph/9610055 [astro-ph].
  30. M. Milosavljević and D. Merritt, “Formation of Galactic Nuclei,” Astrophys. J.  563 no. 1, (Dec., 2001) 34–62, arXiv:astro-ph/0103350 [astro-ph].
  31. N. Sahu, A. W. Graham, and B. L. Davis, “Revealing Hidden Substructures in the M B⁢H𝐵𝐻{}_{BH}start_FLOATSUBSCRIPT italic_B italic_H end_FLOATSUBSCRIPT-σ𝜎\sigmaitalic_σ Diagram, and Refining the Bend in the L-σ𝜎\sigmaitalic_σ Relation,” Astrophys. J.  887 no. 1, (Dec., 2019) 10, arXiv:1908.06838 [astro-ph.GA].
  32. R. C. E. van den Bosch, “Unification of the fundamental plane and Super Massive Black Hole Masses,” Astrophys. J.  831 no. 2, (Nov., 2016) 134, arXiv:1606.01246 [astro-ph.GA].
  33. C. Marsden, F. Shankar, M. Ginolfi, and K. Zubovas, “The case for the fundamental MBHsubscript𝑀BHM_{\rm BH}italic_M start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT-σ𝜎\sigmaitalic_σ relation,” arXiv:2004.00098 [astro-ph.GA].
  34. T. R. Lauer, S. M. Faber, D. Richstone, K. Gebhardt, S. Tremaine, M. Postman, et al., “The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes,” Astrophys. J.  662 no. 2, (June, 2007) 808–834, arXiv:astro-ph/0606739 [astro-ph].
  35. M. Bernardi, F. Shankar, J. B. Hyde, S. Mei, F. Marulli, and R. K. Sheth, “Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type,” Mon. Not. R. Astron. Soc. 404 no. 4, (June, 2010) 2087–2122, arXiv:0910.1093 [astro-ph.CO].
  36. R. Bezanson, P. G. van Dokkum, M. Franx, G. B. Brammer, J. Brinchmann, M. Kriek, et al., “Redshift Evolution of the Galaxy Velocity Dispersion Function,” Astrophys. J. Lett. 737 no. 2, (Aug., 2011) L31, arXiv:1107.0972 [astro-ph.CO].
  37. R. D’Souza, S. Vegetti, and G. Kauffmann, “The massive end of the stellar mass function,” Mon. Not. R. Astron. Soc. 454 no. 4, (Dec., 2015) 4027–4036, arXiv:1509.07418 [astro-ph.GA].
  38. L. Taylor, R. Bezanson, A. van der Wel, A. Pearl, E. F. Bell, F. D’Eugenio, et al., “The Velocity Dispersion Function for Massive Quiescent and Star-forming Galaxies at 0.6 ¡ z ≤\leq≤ 1.0,” Astrophys. J.  939 no. 2, (Nov., 2022) 90, arXiv:2210.00144 [astro-ph.GA].
  39. C. Li and S. D. M. White, “The distribution of stellar mass in the low-redshift Universe,” Mon. Not. R. Astron. Soc. 398 no. 4, (Oct., 2009) 2177–2187, arXiv:0901.0706 [astro-ph.CO].
  40. M. Bernardi, A. Meert, R. K. Sheth, V. Vikram, M. Huertas-Company, S. Mei, and F. Shankar, “The massive end of the luminosity and stellar mass functions: Dependence on the fit to the light profile,” Mon. Not. Roy. Astron. Soc. 436 (2013) 697, arXiv:1304.7778 [astro-ph.CO].
  41. P. F. Hopkins, G. T. Richards, and L. Hernquist, “An Observational Determination of the Bolometric Quasar Luminosity Function,” Astrophys. J.  654 no. 2, (Jan., 2007) 731–753, arXiv:astro-ph/0605678 [astro-ph].
  42. L. Z. Kelley, L. Blecha, and L. Hernquist, “Massive Black Hole Binary Mergers in Dynamical Galactic Environments,” Mon. Not. Roy. Astron. Soc. 464 no. 3, (2017) 3131–3157, arXiv:1606.01900 [astro-ph.HE].
  43. C.-P. Ma, J. E. Greene, N. McConnell, R. Janish, J. P. Blakeslee, J. Thomas, and J. D. Murphy, “The MASSIVE Survey. I. A Volume-limited Integral-field Spectroscopic Study of the Most Massive Early-type Galaxies within 108 Mpc,” Astrophys. J.  795 no. 2, (Nov., 2014) 158, arXiv:1407.1054 [astro-ph.GA].
  44. NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries,” Astrophys. J. Lett. 951 no. 2, (2023) L50, arXiv:2306.16222 [astro-ph.HE].
  45. J. Thomas, C.-P. Ma, N. J. McConnell, J. E. Greene, J. P. Blakeslee, and R. Janish, “A 17-billion-solar-mass black hole in a group galaxy with a diffuse core,” Nature (London) 532 no. 7599, (Apr., 2016) 340–342, arXiv:1604.01400 [astro-ph.GA].
Citations (6)

Summary

  • The paper finds that gravitational wave amplitudes from pulsar timing arrays exceed model predictions, implying supermassive black holes are at least ten times more massive than expected.
  • It employs robust mathematical modeling to contrast predicted amplitudes from established SMBH scaling relations with observed nanohertz-frequency signals.
  • The study suggests that revising the SMBH mass function is essential, as current models may overlook a population of extremely massive black holes.

Analyzing the Constraints from NANOGrav on Supermassive Black Holes

The paper under review focuses on the analysis of gravitational wave (GW) data from pulsar timing arrays (PTAs), specifically addressing discrepancies related to the black hole masses derived from such data. The paper critiques the identification of a stochastic GW background (SGWB) predominantly originating from supermassive black hole binaries (SMBHBs). The authors, Gabriela Sato-Polito, Matias Zaldarriaga, and Eliot Quataert, observe that the amplitude of the nanohertz-frequency GW signal detected by PTAs, including the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), is significantly higher than theoretical expectations based on the observed Supermassive Black Hole (SMBH) population.

The methodology employed by the authors relies on contrasting the predicted GW amplitude, based on existing local-galactic SMBH scaling relations, with the reported values from multiple PTA collaborations. These discrepancies suggest that existing models may underestimate the abundance or mass distribution of SMBHs. According to the authors, the GW signals primarily arise from SMBHs with masses far exceeding what current models predict. Specifically, the paper deduces that the SMBH mass contributing to the SGWB should be at least ten times larger than previous estimates, requiring typical contributing masses to be around 3×1010M3 \times 10^{10} M_\odot.

In their analysis, the authors assess whether this inconsistency could be resolved by assuming a different merger history for SMBHs. They explore potential enhancements in characteristic strain due to repeated SMBH mergers but illustrate that such scenarios are insufficient to explain the observed results. Consequently, the authors suggest that the characteristic masses might be underpredicted, potentially due to an underestimated high-mass end of the SMBH mass function. They reason that PTA measurements offer a unique observational window into the population of such massive SMBHs, complementary to electromagnetic observations, which might overlook certain high-mass ranges due to rarity and opacity at requisite wavelengths.

The paper's core contribution lies in its quantitative analysis of the GW amplitudes' mismatch, offering an original interpretation of the PTA measurements. The authors deploy robust mathematical modeling to demonstrate that allowed modifications to the SMBH mass function are commensurate with maintaining established mass density constraints derived from the Soltan argument. However, these modifications need invoke an increase in the mass estimates of the most massive SMBHs, suggesting the existence of a previously unobserved population of extremely massive black holes. Proposals such as increasing scatter in the MσM-\sigma relation or adopting a steeper high-velocity dispersion galaxy slope are examined. They conclude that constraints from direct kinematic measurements of nearby SMBHs do not corroborate such proposed changes.

The implications of this research connect GW observations with cut-edge quasar and galactic investigations, presenting critical questions about the high-mass tail of the SMBH distribution. Foremost, it engenders new hypotheses about the cosmic history and behavior of SMBHs, questioning factors like merger rates and their correspondence with observed galaxy properties. Future telescopic advancements and observational campaigns geared towards SMBHs could corroborate or refute these inferred mass extents, refining the theoretical models in line with GW signal data.

In conclusion, this paper underscores a vital intersection of gravitational wave astronomy and astrophysical SMBH research, challenging established conventions and prompting further investigative thrust into the behavioral patterns of the Universe's most massive black holes. Such analytical convergence propounds a deeper cosmological understanding of black hole evolution and their consequential influence on the Universe's large-scale structure.