Where are NANOGrav's big black holes? (2312.06756v1)
Abstract: Multiple pulsar timing array (PTA) collaborations have recently reported the first detection of gravitational waves (GWs) of nanohertz frequencies. The signal is expected to be primarily sourced by inspiralling supermassive black hole binaries (SMBHBs) and these first results are broadly consistent with the expected GW spectrum from such a population. Curiously, the measured amplitude of the GW background in all announced results is a bit larger than theoretical predictions. In this work, we show that the amplitude of the stochastic gravitational wave background (SGWB) predicted from the present-day abundance of SMBHs derived from local scaling relations is significantly smaller than that measured by the PTAs. We demonstrate that this difference cannot be accounted for through changes in the merger history of SMBHs and that there is an upper limit to the boost to the characteristic strain from multiple merger events, due to the fact that they involve black holes of decreasing masses. If we require the current estimate of the black hole mass density -- equal to the integrated quasar luminosity function through the classic Soltan argument -- to be preserved, then the currently measured PTA result would imply that the typical total mass of SMBHs contributing to the background should be at least $\sim 3 \times 10{10} M_\odot$, a factor of $\sim 10$ larger than previously predicted. The required space density of such massive black holes corresponds to order $10$ $3 \times 10{10} M_\odot$ SMBHs within the volume accessible by stellar and gas dynamical SMBH measurements. By virtue of the GW signal being dominated by the massive end of the SMBH distribution, PTA measurements offer a unique window into such rare objects and complement existing electromagnetic observations.
- R. W. Hellings and G. S. Downs, “Upper limits on the isotropic gravitational radiation background from pulsar timing analysis.,” Astrophys. J. Lett. 265 (Feb., 1983) L39–L42.
- EPTA Collaboration, J. Antoniadis et al., “The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals,” arXiv:2306.16214 [astro-ph.HE].
- NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” Astrophys. J. Lett. 951 no. 1, (2023) L8, arXiv:2306.16213 [astro-ph.HE].
- D. J. Reardon et al., “Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951 no. 1, (2023) L6, arXiv:2306.16215 [astro-ph.HE].
- H. Xu et al., “Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I,” Res. Astron. Astrophys. 23 no. 7, (2023) 075024, arXiv:2306.16216 [astro-ph.HE].
- International Pulsar Timing Array Collaboration, G. Agazie et al., “Comparing recent PTA results on the nanohertz stochastic gravitational wave background,” arXiv:2309.00693 [astro-ph.HE].
- S. Burke-Spolaor et al., “The Astrophysics of Nanohertz Gravitational Waves,” Astron. Astrophys. Rev. 27 no. 1, (2019) 5, arXiv:1811.08826 [astro-ph.HE].
- J. Kormendy and D. Richstone, “Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei,” Annu. Rev. Astron. Astrophys. 33 (Jan., 1995) 581.
- D. Richstone, E. A. Ajhar, R. Bender, G. Bower, A. Dressler, S. M. Faber, et al., “Supermassive black holes and the evolution of galaxies.,” Nature (London) 385 no. 6701, (Oct., 1998) A14, arXiv:astro-ph/9810378 [astro-ph].
- M. C. Begelman, R. D. Blandford, and M. J. Rees, “Massive black hole binaries in active galactic nuclei,” Nature (London) 287 no. 5780, (Sept., 1980) 307–309.
- J. Kormendy and L. C. Ho, “Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies,” Annu. Rev. Astron. Astrophys. 51 no. 1, (Aug., 2013) 511–653, arXiv:1304.7762 [astro-ph.CO].
- N. J. McConnell and C.-P. Ma, “Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties,” Astrophys. J. 764 no. 2, (Feb., 2013) 184, arXiv:1211.2816 [astro-ph.CO].
- A. Marconi, G. Risaliti, R. Gilli, L. K. Hunt, R. Maiolino, and M. Salvati, “Local supermassive black holes, relics of active galactic nuclei and the X-ray background,” Mon. Not. R. Astron. Soc. 351 no. 1, (June, 2004) 169–185, arXiv:astro-ph/0311619 [astro-ph].
- M. Vika, S. P. Driver, A. W. Graham, and J. Liske, “The Millennium Galaxy Catalogue: the Mbh𝑏ℎ{}_{bh}start_FLOATSUBSCRIPT italic_b italic_h end_FLOATSUBSCRIPT-Lspheroid𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑{}_{spheroid}start_FLOATSUBSCRIPT italic_s italic_p italic_h italic_e italic_r italic_o italic_i italic_d end_FLOATSUBSCRIPT derived supermassive black hole mass function,” Mon. Not. R. Astron. Soc. 400 no. 3, (Dec., 2009) 1451–1460, arXiv:0908.2102 [astro-ph.CO].
- F. Shankar, D. H. Weinberg, and J. Miralda-Escudé, “Self-Consistent Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates, and the Mean Radiative Efficiency,” Astrophys. J. 690 no. 1, (Jan., 2009) 20–41, arXiv:0710.4488 [astro-ph].
- F. Shankar, “Black hole demography: from scaling relations to models,” Classical and Quantum Gravity 30 no. 24, (Dec., 2013) 244001, arXiv:1307.3289 [astro-ph.CO].
- A. Soltan, “Masses of quasars.,” Mon. Not. R. Astron. Soc. 200 (July, 1982) 115–122.
- A. Cavaliere, P. Morrison, and K. Wood, “On Quasar Evolution,” Astrophys. J. 170 (Dec., 1971) 223.
- T. A. Small and R. D. Blandford, “Quasar evolution and the growth of black holes.,” Mon. Not. R. Astron. Soc. 259 (Dec., 1992) 725–737.
- Q. Yu and S. Tremaine, “Observational constraints on growth of massive black holes,” Mon. Not. R. Astron. Soc. 335 no. 4, (Oct., 2002) 965–976, arXiv:astro-ph/0203082 [astro-ph].
- F. Shankar, D. H. Weinberg, and J. Miralda-Escudé, “Accretion-driven evolution of black holes: Eddington ratios, duty cycles and active galaxy fractions,” Mon. Not. R. Astron. Soc. 428 no. 1, (Jan., 2013) 421–446, arXiv:1111.3574 [astro-ph.CO].
- M. Tucci and M. Volonteri, “Constraining supermassive black hole evolution through the continuity equation,” Astron. Astrophys. 600 (2017) A64, arXiv:1603.00823 [astro-ph.GA].
- E. S. Phinney, “A Practical theorem on gravitational wave backgrounds,” arXiv:astro-ph/0108028.
- NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background,” Astrophys. J. Lett. 952 no. 2, (2023) L37, arXiv:2306.16220 [astro-ph.HE].
- J. Kormendy and R. Bender, “The Lvpropσ𝜎\sigmaitalic_σ88{}^{8}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPT Correlation for Elliptical Galaxies with Cores: Relation with Black Hole Mass,” Astrophys. J. Lett. 769 no. 1, (May, 2013) L5.
- J. Thomas, R. P. Saglia, R. Bender, P. Erwin, and M. Fabricius, “The Dynamical Fingerprint of Core Scouring in Massive Elliptical Galaxies,” Astrophys. J. 782 no. 1, (2014) 39, arXiv:1311.3783 [astro-ph.GA].
- J. Hlavacek-Larrondo, A. C. Fabian, A. C. Edge, and M. T. Hogan, “On the hunt for ultramassive black holes in brightest cluster galaxies,” Mon. Not. R. Astron. Soc. 424 no. 1, (July, 2012) 224–231, arXiv:1204.5759 [astro-ph.CO].
- T. Ebisuzaki, J. Makino, and S. K. Okumura, “Merging of two galaxies with central black holes,” Nature (London) 354 no. 6350, (Nov., 1991) 212–214.
- S. M. Faber, S. Tremaine, E. A. Ajhar, Y.-I. Byun, A. Dressler, K. Gebhardt, et al., “The Centers of Early-Type Galaxies with HST. IV. Central Parameter Relations.,” Astron. J. 114 (Nov., 1997) 1771, arXiv:astro-ph/9610055 [astro-ph].
- M. Milosavljević and D. Merritt, “Formation of Galactic Nuclei,” Astrophys. J. 563 no. 1, (Dec., 2001) 34–62, arXiv:astro-ph/0103350 [astro-ph].
- N. Sahu, A. W. Graham, and B. L. Davis, “Revealing Hidden Substructures in the M BH𝐵𝐻{}_{BH}start_FLOATSUBSCRIPT italic_B italic_H end_FLOATSUBSCRIPT-σ𝜎\sigmaitalic_σ Diagram, and Refining the Bend in the L-σ𝜎\sigmaitalic_σ Relation,” Astrophys. J. 887 no. 1, (Dec., 2019) 10, arXiv:1908.06838 [astro-ph.GA].
- R. C. E. van den Bosch, “Unification of the fundamental plane and Super Massive Black Hole Masses,” Astrophys. J. 831 no. 2, (Nov., 2016) 134, arXiv:1606.01246 [astro-ph.GA].
- C. Marsden, F. Shankar, M. Ginolfi, and K. Zubovas, “The case for the fundamental MBHsubscript𝑀BHM_{\rm BH}italic_M start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT-σ𝜎\sigmaitalic_σ relation,” arXiv:2004.00098 [astro-ph.GA].
- T. R. Lauer, S. M. Faber, D. Richstone, K. Gebhardt, S. Tremaine, M. Postman, et al., “The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes,” Astrophys. J. 662 no. 2, (June, 2007) 808–834, arXiv:astro-ph/0606739 [astro-ph].
- M. Bernardi, F. Shankar, J. B. Hyde, S. Mei, F. Marulli, and R. K. Sheth, “Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type,” Mon. Not. R. Astron. Soc. 404 no. 4, (June, 2010) 2087–2122, arXiv:0910.1093 [astro-ph.CO].
- R. Bezanson, P. G. van Dokkum, M. Franx, G. B. Brammer, J. Brinchmann, M. Kriek, et al., “Redshift Evolution of the Galaxy Velocity Dispersion Function,” Astrophys. J. Lett. 737 no. 2, (Aug., 2011) L31, arXiv:1107.0972 [astro-ph.CO].
- R. D’Souza, S. Vegetti, and G. Kauffmann, “The massive end of the stellar mass function,” Mon. Not. R. Astron. Soc. 454 no. 4, (Dec., 2015) 4027–4036, arXiv:1509.07418 [astro-ph.GA].
- L. Taylor, R. Bezanson, A. van der Wel, A. Pearl, E. F. Bell, F. D’Eugenio, et al., “The Velocity Dispersion Function for Massive Quiescent and Star-forming Galaxies at 0.6 ¡ z ≤\leq≤ 1.0,” Astrophys. J. 939 no. 2, (Nov., 2022) 90, arXiv:2210.00144 [astro-ph.GA].
- C. Li and S. D. M. White, “The distribution of stellar mass in the low-redshift Universe,” Mon. Not. R. Astron. Soc. 398 no. 4, (Oct., 2009) 2177–2187, arXiv:0901.0706 [astro-ph.CO].
- M. Bernardi, A. Meert, R. K. Sheth, V. Vikram, M. Huertas-Company, S. Mei, and F. Shankar, “The massive end of the luminosity and stellar mass functions: Dependence on the fit to the light profile,” Mon. Not. Roy. Astron. Soc. 436 (2013) 697, arXiv:1304.7778 [astro-ph.CO].
- P. F. Hopkins, G. T. Richards, and L. Hernquist, “An Observational Determination of the Bolometric Quasar Luminosity Function,” Astrophys. J. 654 no. 2, (Jan., 2007) 731–753, arXiv:astro-ph/0605678 [astro-ph].
- L. Z. Kelley, L. Blecha, and L. Hernquist, “Massive Black Hole Binary Mergers in Dynamical Galactic Environments,” Mon. Not. Roy. Astron. Soc. 464 no. 3, (2017) 3131–3157, arXiv:1606.01900 [astro-ph.HE].
- C.-P. Ma, J. E. Greene, N. McConnell, R. Janish, J. P. Blakeslee, J. Thomas, and J. D. Murphy, “The MASSIVE Survey. I. A Volume-limited Integral-field Spectroscopic Study of the Most Massive Early-type Galaxies within 108 Mpc,” Astrophys. J. 795 no. 2, (Nov., 2014) 158, arXiv:1407.1054 [astro-ph.GA].
- NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries,” Astrophys. J. Lett. 951 no. 2, (2023) L50, arXiv:2306.16222 [astro-ph.HE].
- J. Thomas, C.-P. Ma, N. J. McConnell, J. E. Greene, J. P. Blakeslee, and R. Janish, “A 17-billion-solar-mass black hole in a group galaxy with a diffuse core,” Nature (London) 532 no. 7599, (Apr., 2016) 340–342, arXiv:1604.01400 [astro-ph.GA].