Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New black hole mergers in the LIGO-Virgo O3 data from a gravitational wave search including higher-order harmonics (2312.06631v1)

Published 11 Dec 2023 in gr-qc, astro-ph.CO, astro-ph.HE, and astro-ph.IM

Abstract: Nearly all of the previous gravitational wave (GW) searches in the LIGO-Virgo data included GW waveforms with only the dominant quadrupole mode, i.e., omitting higher-order harmonics which are predicted by general relativity. Based on the techniques developed in Wadekar et al. [1,2], we improve the IAS pipeline by ($i$) introducing higher harmonics in the GW templates, ($ii$) downweighting noise transients ('glitches') to improve the search sensitivity to high-mass and high-redshift binary black hole (BBH) mergers. We find 14 new BBH mergers with $0.53\leq p_{\rm astro}\leq 0.88$ on running our pipeline over the public LIGO-Virgo data from the O3 run (we use the detection threshold as $p_{\rm astro}>0.5$ following the approach of other pipelines). We also broadly recover the high-significance events from earlier catalogs, except some which were either vetoed or fell below our SNR threshold for trigger collection. A few notable properties of our new candidate events are as follows. At $>95$\% credibility, 4 candidates have total masses in the IMBH range (i.e., above 100 $M_\odot$), and 9 candidates have $z>0.5$. 9 candidates have median mass of the primary BH falling roughly within the pair instability mass gap, with the highest primary mass being $300_{+60}{-120} M_\odot$. 5 candidates have median mass ratio $q < 0.5$. Under a prior uniform in effective spin $\chi_{\rm eff}$, 6 candidates have $\chi_{\rm eff} > 0$ at $>95\%$ credibility. We also find that including higher harmonics in our search raises the significance of a few previously reported marginal events (e.g., GW190711_030756). While our new candidate events have modest false alarm rates ($\gtrsim 1.6 $/yr), a population inference study including these can better inform the parameter space of BHs corresponding to the pair instability mass gap, high redshifts, positive effective spins and asymmetric mass ratios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. D. Wadekar et al., in preparation  (2023b).
  2. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 6, 041015 (2016a).
  3. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
  4. R. Abbott et al., Physical Review X 11, 021053 (2021), arXiv:2010.14527 [gr-qc] .
  5. A. H. Nitz, S. Kumar, Y.-F. Wang, S. Kastha, et al., “4-OGC: Catalog of gravitational waves from compact-binary mergers,”  (2021), arXiv:2112.06878 [astro-ph.HE] .
  6. K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980).
  7. C. Mills and S. Fairhurst, Phys. Rev. D 103, 024042 (2021), arXiv:2007.04313 [gr-qc] .
  8. R. Abbott et al., ApJ 896, L44 (2020b), arXiv:2006.12611 [astro-ph.HE] .
  9. C. D. Capano, M. Cabero, J. Westerweck, J. Abedi, et al., “Observation of a multimode quasi-normal spectrum from a perturbed black hole,”  (2021), arXiv:2105.05238 [gr-qc] .
  10. J. Roulet et al., in preparation  (2023).
  11. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 93, 122003 (2016b), arXiv:1602.03839 [gr-qc] .
  12. M. Fishbach and D. E. Holz, ApJ 851, L25 (2017), arXiv:1709.08584 [astro-ph.HE] .
  13. J. U. Lange, “Nautilus: boosting bayesian importance nested sampling with deep learning,”  (2023), arXiv:2306.16923 [astro-ph.IM] .
  14. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
  15. R. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 125, 101102 (2020).
  16. P. Marchant and T. Moriya, Astron. Astrophys. 640, L18 (2020), arXiv:2007.06220 [astro-ph.HE] .
  17. P. Madau and M. Dickinson, ARA&A 52, 415 (2014), arXiv:1403.0007 [astro-ph.CO] .
  18. I. Mandel and S. E. de Mink, Monthly Notices of the Royal Astronomical Society 458, 2634 (2016).
  19. J. Roulet and M. Zaldarriaga, Monthly Notices of the Royal Astronomical Society 484, 4216–4229 (2019).
  20. K. A. Postnov and L. R. Yungelson, Living Reviews in Relativity 17, 3 (2014), arXiv:1403.4754 [astro-ph.HE] .
  21. M. Maggiore et al., JCAP 03, 050 (2020), arXiv:1912.02622 [astro-ph.CO] .
  22. M. Evans et al., arXiv e-prints , arXiv:2306.13745 (2023), arXiv:2306.13745 [astro-ph.IM] .
  23. S. Kawamura et al.,  (2020), 10.48550/ARXIV.2006.13545.
  24. P. Amaro-Seoane et al., arXiv e-prints , arXiv:1702.00786 (2017), arXiv:1702.00786 [astro-ph.IM] .
  25. T. Akutsu et al. (KAGRA), PTEP 2021, 05A101 (2021), arXiv:2005.05574 [physics.ins-det] .
Citations (15)

Summary

We haven't generated a summary for this paper yet.