Aligning brain functions boosts the decoding of visual semantics in novel subjects (2312.06467v1)
Abstract: Deep learning is leading to major advances in the realm of brain decoding from functional Magnetic Resonance Imaging (fMRI). However, the large inter-subject variability in brain characteristics has limited most studies to train models on one subject at a time. Consequently, this approach hampers the training of deep learning models, which typically requires very large datasets. Here, we propose to boost brain decoding by aligning brain responses to videos and static images across subjects. Compared to the anatomically-aligned baseline, our method improves out-of-subject decoding performance by up to 75%. Moreover, it also outperforms classical single-subject approaches when fewer than 100 minutes of data is available for the tested subject. Furthermore, we propose a new multi-subject alignment method, which obtains comparable results to that of classical single-subject approaches while improving out-of-subject generalization. Finally, we show that this method aligns neural representations in accordance with brain anatomy. Overall, this study lays the foundations for leveraging extensive neuroimaging datasets and enhancing the decoding of individuals with a limited amount of brain recordings.
- Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8, 2014. ISSN 1662-5196. URL https://www.frontiersin.org/article/10.3389/fninf.2014.00014.
- A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience, pp. 1–11, December 2021. ISSN 1546-1726. doi: 10.1038/s41593-021-00962-x. URL https://www.nature.com/articles/s41593-021-00962-x. Bandiera_abtest: a Cg_type: Nature Research Journals Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Cortex;Neural encoding;Object vision;Perception Subject_term_id: cortex;neural-encoding;object-vision;perception.
- A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience, 25(1):116–126, January 2022. ISSN 1546-1726. doi: 10.1038/s41593-021-00962-x. URL https://www.nature.com/articles/s41593-021-00962-x. Number: 1 Publisher: Nature Publishing Group.
- Local Optimal Transport for Functional Brain Template Estimation. In Albert C. S. Chung, James C. Gee, Paul A. Yushkevich, and Siqi Bao (eds.), Information Processing in Medical Imaging, Lecture Notes in Computer Science, pp. 237–248, Cham, 2019. Springer International Publishing. ISBN 978-3-030-20351-1. doi: 10.1007/978-3-030-20351-1˙18.
- An empirical evaluation of functional alignment using inter-subject decoding. NeuroImage, 245:118683, December 2021. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2021.118683. URL https://www.sciencedirect.com/science/article/pii/S1053811921009563.
- Brain decoding: toward real-time reconstruction of visual perception. arXiv preprint arXiv:2310.19812, 2023.
- A Reduced-Dimension fMRI Shared Response Model. In Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https://papers.nips.cc/paper_files/paper/2015/hash/b3967a0e938dc2a6340e258630febd5a-Abstract.html.
- Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for Vision Decoding, March 2023a. URL http://arxiv.org/abs/2211.06956. arXiv:2211.06956 [cs].
- Cinematic Mindscapes: High-quality Video Reconstruction from Brain Activity, May 2023b. URL http://arxiv.org/abs/2305.11675. arXiv:2305.11675 [cs].
- Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances. arXiv, June 2013. doi: 10.48550/arXiv.1306.0895.
- Decoding speech from non-invasive brain recordings, August 2022. URL http://arxiv.org/abs/2208.12266. arXiv:2208.12266 [cs, eess, q-bio].
- The Individualized Neural Tuning Model: Precise and generalizable cartography of functional architecture in individual brains, May 2022. URL https://www.biorxiv.org/content/10.1101/2022.05.15.492022v1. Pages: 2022.05.15.492022 Section: New Results.
- Brain Captioning: Decoding human brain activity into images and text, May 2023. URL http://arxiv.org/abs/2305.11560. arXiv:2305.11560 [cs].
- Bruce Fischl. FreeSurfer. NeuroImage, 62(2):774–781, August 2012. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2012.01.021. URL https://www.sciencedirect.com/science/article/pii/S1053811912000389.
- The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80:105–124, October 2013. ISSN 1095-9572. doi: 10.1016/j.neuroimage.2013.04.127.
- A multi-modal parcellation of human cerebral cortex. Nature, 536(7615):171–178, August 2016. ISSN 1476-4687. doi: 10.1038/nature18933. URL https://www.nature.com/articles/nature18933. Number: 7615 Publisher: Nature Publishing Group.
- G. H. Glover. Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage, 9(4):416–429, April 1999. ISSN 1053-8119. doi: 10.1006/nimg.1998.0419.
- Decoding natural image stimuli from fMRI data with a surface-based convolutional network, March 2023. URL http://arxiv.org/abs/2212.02409. arXiv:2212.02409 [cs, q-bio].
- Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238):632–635, 2009.
- A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72(2):404–416, October 2011. ISSN 1097-4199. doi: 10.1016/j.neuron.2011.08.026.
- Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies. eLife, 9:e56601, June 2020. ISSN 2050-084X. doi: 10.7554/eLife.56601. URL https://doi.org/10.7554/eLife.56601. Publisher: eLife Sciences Publications, Ltd.
- Decoding mental states from brain activity in humans. Nature reviews neuroscience, 7(7):523–534, 2006.
- Inter-individual deep image reconstruction via hierarchical neural code conversion. NeuroImage, 271:120007, May 2023. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2023.120007. URL https://www.sciencedirect.com/science/article/pii/S1053811923001532.
- Generic decoding of seen and imagined objects using hierarchical visual features. Nat. Commun., 8(15037):1–15, May 2017. ISSN 2041-1723. doi: 10.1038/ncomms15037.
- A Penny for Your (visual) Thoughts: Self-Supervised Reconstruction of Natural Movies from Brain Activity, June 2022. URL http://arxiv.org/abs/2206.03544. arXiv:2206.03544 [cs].
- BOLD Moments: modeling short visual events through a video fMRI dataset and metadata, March 2023. URL https://www.biorxiv.org/content/10.1101/2023.03.12.530887v1. Pages: 2023.03.12.530887 Section: New Results.
- A natural language fMRI dataset for voxelwise encoding models. Scientific Data, 10(1):555, August 2023. ISSN 2052-4463. doi: 10.1038/s41597-023-02437-z. URL https://www.nature.com/articles/s41597-023-02437-z. Number: 1 Publisher: Nature Publishing Group.
- Christopher R. Madan. Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain. Neuroinformatics, 20(1):109–137, January 2022. ISSN 1559-0089. doi: 10.1007/s12021-021-09519-6.
- UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion Model from Human Brain Activity, August 2023. URL http://arxiv.org/abs/2308.07428. arXiv:2308.07428 [cs].
- Learning to decode cognitive states from brain images. Machine learning, 57:145–175, 2004.
- Reconstructing visual experiences from brain activity evoked by natural movies. Current Biology, 21(19):1641–1646, October 2011. ISSN 0960-9822. doi: 10.1016/j.cub.2011.08.031. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326357/.
- Natural scene reconstruction from fMRI signals using generative latent diffusion, June 2023. URL http://arxiv.org/abs/2303.05334. arXiv:2303.05334 [cs, q-bio].
- Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85):2825–2830, 2011. ISSN 1533-7928. URL http://jmlr.org/papers/v12/pedregosa11a.html.
- Through a Dog’s Eyes: fMRI Decoding of Naturalistic Videos from the Dog Cortex. JoVE (Journal of Visualized Experiments), (187):e64442, September 2022. ISSN 1940-087X. doi: 10.3791/64442. URL https://www.jove.com/fr/v/64442/through-dog-s-eyes-fmri-decoding-naturalistic-videos-from-dog.
- Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping. Scientific Data, 5(1):180105, June 2018. ISSN 2052-4463. doi: 10.1038/sdata.2018.105. URL https://www.nature.com/articles/sdata2018105. Number: 1 Publisher: Nature Publishing Group.
- Learning Transferable Visual Models From Natural Language Supervision, February 2021. URL http://arxiv.org/abs/2103.00020. arXiv:2103.00020 [cs].
- Modeling Shared Responses in Neuroimaging Studies through MultiView ICA, December 2020. URL http://arxiv.org/abs/2006.06635. arXiv:2006.06635 [cs, stat].
- MSM: a new flexible framework for Multimodal Surface Matching. NeuroImage, 100:414–426, October 2014. ISSN 1095-9572. doi: 10.1016/j.neuroimage.2014.05.069.
- Reconstructing the Mind’s Eye: fMRI-to-Image with Contrastive Learning and Diffusion Priors, May 2023. URL http://arxiv.org/abs/2305.18274. arXiv:2305.18274 [cs, q-bio].
- The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation. arXiv:2009.04266 [math, stat], June 2021. URL http://arxiv.org/abs/2009.04266. arXiv: 2009.04266.
- Yu Takagi and Shinji Nishimoto. High-resolution image reconstruction with latent diffusion models from human brain activity, March 2023. URL https://www.biorxiv.org/content/10.1101/2022.11.18.517004v3. Pages: 2022.11.18.517004 Section: New Results.
- Semantic reconstruction of continuous language from non-invasive brain recordings. Nature Neuroscience, 26(5):858–866, May 2023. ISSN 1546-1726. doi: 10.1038/s41593-023-01304-9. URL https://www.nature.com/articles/s41593-023-01304-9. Number: 5 Publisher: Nature Publishing Group.
- Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data. Advances in Neural Information Processing Systems, 35:21255–21269, December 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/8600a9df1a087a9a66900cc8c948c3f0-Abstract-Conference.html.
- Aligning individual brains with fused unbalanced Gromov Wasserstein. Advances in Neural Information Processing Systems, 35:21792–21804, December 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/8906cac4ca58dcaf17e97a0486ad57ca-Abstract-Conference.html.
- Reconstructing rapid natural vision with fMRI-conditional video generative adversarial network. Cerebral Cortex, 32(20):4502–4511, October 2022. ISSN 1047-3211. doi: 10.1093/cercor/bhab498. URL https://doi.org/10.1093/cercor/bhab498.
- Data for Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision Tests, September 2017. URL https://purr.purdue.edu/publications/2809/1.
- Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision. Cerebral Cortex (New York, N.Y.: 1991), 28(12):4136–4160, December 2018. ISSN 1460-2199. doi: 10.1093/cercor/bhx268.
- Alexis Thual (3 papers)
- Yohann Benchetrit (13 papers)
- Felix Geilert (1 paper)
- Jérémy Rapin (20 papers)
- Iurii Makarov (5 papers)
- Hubert Banville (9 papers)
- Jean-Rémi King (18 papers)