Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Internet of Federated Digital Twins (IoFDT): Connecting Twins Beyond Borders for Society 5.0 (2312.06432v3)

Published 11 Dec 2023 in cs.AI

Abstract: The concept of digital twin (DT), which enables the creation of a programmable, digital representation of physical systems, is expected to revolutionize future industries and will lie at the heart of the vision of a future smart society, namely, Society 5.0, in which high integration between cyber (digital) and physical spaces is exploited to bring economic and societal advancements. However, the success of such a DT-driven Society 5.0 requires a synergistic convergence of artificial intelligence and networking technologies into an integrated, programmable system that can coordinate DT networks to effectively deliver diverse Society 5.0 services. Prior works remain restricted to either qualitative study, simple analysis or software implementations of a single DT, and thus, they cannot provide the highly synergistic integration of digital and physical spaces as required by Society 5.0. In contrast, this paper envisions a novel concept of an Internet of Federated Digital Twins (IoFDT) that holistically integrates heterogeneous and physically separated DTs representing different Society 5.0 services within a single framework and system. For this concept of IoFDT, we first introduce a hierarchical architecture that integrates federated DTs through horizontal and vertical interactions, bridging cyber and physical spaces to unlock new possibilities. Then, we discuss challenges of realizing IoFDT, highlighting the intricacies across communication, computing, and AI-native networks while also underscoring potential innovative solutions. Subsequently, we elaborate on the importance of the implementation of a unified IoFDT platform that integrates all technical components and orchestrates their interactions, emphasizing the necessity of practical experimental platforms with a focus on real-world applications in areas like smart mobility.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. S. Mihai, M. Yaqoob, D. V. Hung, W. Davis, P. Towakel, M. Raza, M. Karamanoglu, B. Barn, D. Shetve, R. V. Prasad, H. Venkataraman, R. Trestian, and H. X. Nguyen, “Digital twins: A survey on enabling technologies, challenges, trends and future prospects,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2255–2291, 2022.
  2. O. Hashash, C. Chaccour, W. Saad, T. Yu, K. Sakaguchi, and M. Debbah, “The seven worlds and experiences of the wireless metaverse: Challenges and opportunities,” arXiv:2304.10282, 2023. [Online]. Available: https://arxiv.org/abs/2304.10282
  3. Japan Cabinet Office, “Society 5.0,” 2021. [Online]. Available: {https://www8.cao.go.jp/cstp/english/society5_0/index.html}
  4. L. U. Khan, Z. Han, W. Saad, E. Hossain, M. Guizani, and C. S. Hong, “Digital twin of wireless systems: Overview, taxonomy, challenges, and opportunities,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2230–2254, 2022.
  5. Y. Lu, X. Huang, K. Zhang, S. Mahrajan, and Y. Zhang, “Communication-efficient federated learning for digital twin edge networks in industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5709 – 5718, Aug. 2021.
  6. R. Rolle, V. Martucci, and E. Godoy, “Architecture for digital twin implementation focusing on industry 4.0,” IEEE Latin America Transactions, vol. 18, no. 5, p. 889–898, Apr. 2020.
  7. O. Hashash, C. Chaccour, W. Saad, K. Sakaguchi, and T. Yu, “Towards a decentralized metaverse: Synchronized orchestration of digital twins and sub-metaverses,” 2022.
  8. S. Khadka and K. Tumer, “Evolution-guided policy gradient in reinforcement learning,” Proc. Adv. Neural Inf. Process. Syst., pp. 1188–1200, 2018.
  9. C. Chaccour, W. Saad, M. Debbah, Z. Han, and H. V. Poor, “Less data, more knowledge: Building next generation semantic communication networks,” 2022.
  10. G. I.Parisi, R. Kemker, J. L.Part, C. Kanan, and S. Wermter, “Continual lifelong learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71, 2019.
  11. R. Ruiz, F. Gamma, and A. Ribeiro, “Graph neural networks: Architectures, stability, and transferability,” Proceedings of the IEEE, vol. 109, no. 5, pp. 660 – 682, May 2021.
  12. O. Hashash, C. Chaccour, and W. Saad, “Edge continual learning for dynamic digital twins over wireless networks,” in 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC).   IEEE, 2022.
  13. C. K. Thomas, C. Chaccour, W. Saad, M. Debbah, and C. S. Hong, “Causal reasoning: Charting a revolutionary course for next-generation ai-native wireless networks,” arXiv preprint arXiv:2309.13223, 2023.
  14. Z. Li, K. Wang, T. Yu, and K. Sakaguchi, “Het-sdvn: Sdn-based radio resource management of heterogeneous v2x for cooperative perception,” IEEE Access, vol. 11, pp. 76 255–76 268, 2023.
  15. K. Wang, Z. Li, T. Yu, and K. Sakaguchi, “Smart mobility digital twin for automated driving: Design and proof-of-concept,” pp. 1–6, 2023.
Citations (4)

Summary

We haven't generated a summary for this paper yet.