Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attribute Annotation and Bias Evaluation in Visual Datasets for Autonomous Driving (2312.06306v1)

Published 11 Dec 2023 in cs.CV and cs.AI

Abstract: This paper addresses the often overlooked issue of fairness in the autonomous driving domain, particularly in vision-based perception and prediction systems, which play a pivotal role in the overall functioning of Autonomous Vehicles (AVs). We focus our analysis on biases present in some of the most commonly used visual datasets for training person and vehicle detection systems. We introduce an annotation methodology and a specialised annotation tool, both designed to annotate protected attributes of agents in visual datasets. We validate our methodology through an inter-rater agreement analysis and provide the distribution of attributes across all datasets. These include annotations for the attributes age, sex, skin tone, group, and means of transport for more than 90K people, as well as vehicle type, colour, and car type for over 50K vehicles. Generally, diversity is very low for most attributes, with some groups, such as children, wheelchair users, or personal mobility vehicle users, being extremely underrepresented in the analysed datasets. The study contributes significantly to efforts to consider fairness in the evaluation of perception and prediction systems for AVs. This paper follows reproducibility principles. The annotation tool, scripts and the annotated attributes can be accessed publicly at https://github.com/ec-jrc/humaint_annotator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. D. Fernández-Llorca and E. Gómez, “Trustworthy artificial intelligence requirements in the autonomous driving domain,” Computer, vol. 56, no. 2, pp. 29–39, 2023.
  2. M. Hardt, E. Price, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,” in Advances in Neural Information Processing Systems, vol. 29, 2016.
  3. S. Tolan, “Fair and unbiased algorithmic decision making: Current state and future challenges,” Digital Economy Working Paper - JRC Technical Reports, vol. JRC113750, 2019.
  4. D. Fernández Llorca and E. Gómez, “Trustworthy autonomous vehicles,” EUR 30942 EN, Publications Office of the European Union, Luxembourg, vol. JRC127051, 2021.
  5. Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale long-tailed recognition in an open world,” in Computer Vision and Pattern Recognition, 2019, pp. 2537–2546.
  6. H. C. Sánchez, N. H. Parra, I. P. Alonso, E. Nebot, and D. Fernández-Llorca, “Are we ready for accurate and unbiased fine-grained vehicle classification in realistic environments?” IEEE Access, vol. 9, pp. 116 338–116 355, 2021.
  7. D. Pessach and E. Shmueli, “Algorithmic fairness,” arXiv preprint arXiv:2001.097845, 2020.
  8. K. Yang, K. Qinami, L. Fei-Fei, J. Deng, and O. Russakovsky, “Towards fairer datasets: filtering and balancing the distribution of the people subtree in the imagenet hierarchy,” in Conference on Fairness, Accountability, and Transparency (FAT), 2020, p. 547–558.
  9. B. Wilson, B. Hoffman, and J. Morgenstern, “Predictive Inequity in Object Detection,” in Workshop on Fairness Accountability Transparency and Ethics in Computer Vision at CVPR, 2019.
  10. M. Brandao, “Age and gender bias in pedestrian detection algorithms,” in Workshop on Fairness Accountability Transparency and Ethics in Computer Vision at CVPR, 2019.
  11. X. Li, Z. Chen, J. M. Zhang, F. Sarro, Y. Zhang, and X. Liu, “Dark-skin individuals are at more risk on the street: Unmasking fairness issues of autonomous driving systems,” arXiv:2308.02935, 2023.
  12. S. Fabbrizzi, S. Papadopoulos, E. Ntoutsi, and I. Kompatsiaris, “A survey on bias in visual datasets,” Computer Vision and Image Understanding, vol. 223, p. 103552, 2022.
  13. M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji, and T. Gebru, “Model cards for model reporting,” in Proceedings of the Conference on Fairness, Accountability, and Transparency, ser. FAT* ’19, 2019, p. 220–229.
  14. T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. I. au2, and K. Crawford, “Datasheets for datasets,” arXiv 1803.09010, 2021.
  15. C. Schumann, S. Ricco, U. Prabhu, V. Ferrari, and C. Pantofaru, “A step toward more inclusive people annotations for fairness,” in Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, ser. AIES ’21, 2021, p. 916–925.
  16. A. Fabris, S. Messina, G. Silvello, and G. A. Susto, “Algorithmic fairness datasets: the story so far,” Data Mining and Knowledge Discovery, vol. 36, p. 2074–2152, 2022.
  17. J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy disparities in commercial gender classification,” in Proceedings of Machine Learning Research. Conference on Fairness, Accountability, and Transparency, vol. 81, 2018, p. 1–15.
  18. H. J. Ryu, H. Adam, and M. Mitchell, “Inclusivefacenet: Improving face attribute detection with race and gender diversity,” in 2018 Workshop on Fairness, Accountability, and Transparency in Machine Learning (FAT/ML 2018), 2018.
  19. L. Rhue, “Racial influence on automated perceptions of emotions,” Social Science Research Network (SSRN), 2018.
  20. T. Xu, J. White, S. Kalkan, and H. Gunes, “Investigating bias and fairness in facial expression recognition,” in Computer Vision – ECCV 2020 Workshops, 2020, pp. 506–523.
  21. J. Choi, C. Gao, C. E. J. Messou, and J.-B. Huang, “Why can’t i dance in the mall? learning to mitigate scene bias in action recognition,” in 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019.
  22. L. A. Hendricks, K. Burns, K. Saenko, T. Darrell, and A. Rohrbach, “Women also snowboard: Overcoming bias in captioning models,” in European Conference on Computer Vision (ECCV), 2018, pp. 793–811.
  23. K. Kärkkäinen and J. Joo, “Fairface: Face attribute dataset for balanced race, gender, and age for bias measurement and mitigation,” in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021, pp. 1548–1558.
  24. M. Merler, N. Ratha, R. S. Feris, and J. R. Smith, “Diversity in faces,” arXiv:1901.10436, 2019.
  25. M. Georgopoulos, Y. Panagakis, and M. Pantic, “Investigating bias in deep face analysis: The kanface dataset and empirical study,” Image and Vision Computing, vol. 102, p. 103954, 2020.
  26. C. Hazirbas, J. Bitton, B. Dolhansky, J. Pan, A. Gordo, and C. C. Ferrer, “Towards measuring fairness in ai: The casual conversations dataset,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 4, no. 3, pp. 324–332, 2022.
  27. Amazon, “Sagemaker clarify,” 2023. [Online]. Available: https://aws.amazon.com/sagemaker/clarify/
  28. Google, “Know your data,” 2023. [Online]. Available: https://knowyourdata.withgoogle.com/
  29. A. Wang, A. Liu, R. Zhang, A. Kleiman, L. Kim, D. Zhao, I. Shirai, A. Narayanan, and O. Russakovsky, “Revise: A tool for measuring and mitigating bias in visual datasets,” International Journal of Computer Vision, vol. 130, pp. 1790–1810, 2022.
  30. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.
  31. X. Li, F. Flohr, Y. Yang, H. Xiong, M. Braun, S. Pan, K. Li, and D. M. Gavrila, “A new benchmark for vision-based cyclist detection,” in 2016 IEEE Intelligent Vehicles Symposium (IV), 2016, pp. 1028–1033.
  32. S. Zhang, R. Benenson, and B. Schiele, “CityPersons: A Diverse Dataset for Pedestrian Detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4457–4465.
  33. M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “EuroCity Persons: A Novel Benchmark for Person Detection in Traffic Scenes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1844–1861, 2019.
  34. F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2633–2642.
  35. Motional, “nuimages,” 2020. [Online]. Available: https://www.nuscenes.org/nuimages
  36. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic Urban Scene Understanding,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3213–3223.
  37. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A Multimodal Dataset for Autonomous Driving,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 11 618–11 628.
  38. S. Vijayanarasimhan and K. Grauman, “What’s it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations,” in IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 2262–2269.
  39. D. ten Hove, “Interrater reliability for incomplete and dependent data,” Thesis, fully internal, Universiteit van Amsterdam, 2023.
  40. R. I. Gonzalo, C. S. Maldonado, J. A. Ruiz, I. P. Alonso, D. F. Llorca, and M. A. Sotelo, “Testing predictive automated driving systems: Lessons learned and future recommendations,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 6, pp. 77–93, 2022.
  41. D. A. Escobar, S. Cardona, and G. Hernández-Pulgarín, “Risky pedestrian behaviour and its relationship with road infrastructure and age group: An observational analysis,” Safety Science, vol. 143, p. 105418, 2021.
  42. I. Parra Alonso, D. Fernandez Llorca, M. A. Sotelo, L. M. Bergasa, P. Revenga de Toro, J. Nuevo, M. Ocana, and M. A. Garcia Garrido, “Combination of feature extraction methods for svm pedestrian detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp. 292–307, 2007.
  43. M. Zeedyk and L. Kelly, “Behavioural observations of adult–child pairs at pedestrian crossings,” Accident Analysis & Prevention, vol. 35, no. 5, pp. 771–776, 2003.
  44. S. Lord, M.-S. Cloutier, B. Garnier, and Z. Christoforou, “Crossing road intersections in old age—with or without risks? perceptions of risk and crossing behaviours among the elderly,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 55, pp. 282–296, 2018.
  45. X. Wang, S. Zheng, R. Yang, A. Zheng, Z. Chen, J. Tang, and B. Luo, “Pedestrian attribute recognition: A survey,” Pattern Recognition, vol. 121, p. 108220, 2022.
  46. J. C. Wells, “Sexual dimorphism of body composition,” Best Practice & Research Clinical Endocrinology & Metabolism, vol. 21, no. 3, pp. 415–430, 2007, normal and Abnormal Sex Development.
  47. C. Holland and R. Hill, “Gender differences in factors predicting unsafe crossing decisions in adult pedestrians across the lifespan: A simulation study,” Accident Analysis & Prevention, vol. 42, no. 4, pp. 1097–1106, 2010.
  48. T. B. Fitzpatrick, “Soleil et peau,” J Med Esthet, vol. 2, pp. 33–34, 1975.
  49. S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Occlusion-aware r-cnn: Detecting pedestrians in a crowd,” in Computer Vision – ECCV 2018, 2018, pp. 657–674.
  50. A. Rasouli and J. K. Tsotsos, “Autonomous vehicles that interact with pedestrians: A survey of theory and practice,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 900–918, 2020.
  51. T. Rosenbloom, “Crossing at a red light: Behaviour of individuals and groups,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 12, no. 5, pp. 389–394, 2009.
  52. C. Laverdet, P. Malola, T. Meyer, and P. Delhomme, “Electric personal mobility device driver behaviors, their antecedents and consequences: A narrative review,” Journal of Safety Research, 2023.
  53. L.-W. Tsai, J.-W. Hsieh, and K.-C. Fan, “Vehicle detection using normalized color and edge map,” IEEE Transactions on Image Processing, vol. 16, no. 3, pp. 850–864, 2007.
  54. P. Chen, X. Bai, and W. Liu, “Vehicle color recognition on urban road by feature context,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp. 2340–2346, 2014.
  55. S. Newstead and A. D’Elia, “Does vehicle colour influence crash risk?” Safety Science, vol. 48, no. 10, pp. 1327–1338, 2010.
  56. A. Paullada, I. D. Raji, E. M. Bender, E. Denton, and A. Hanna, “Data and its (dis)contents: A survey of dataset development and use in machine learning research,” Patterns, vol. 2, no. 11, p. 100336, 2021.
  57. C. G. Northcutt, A. Athalye, and J. Mueller, “Pervasive label errors in test sets destabilize machine learning benchmarks,” in 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.
  58. T. Rädsch, A. Reinke, V. Weru, M. D. Tizabi, N. Schreck, A. E. Kavur, B. Pekdemir, T. Roß, A. Kopp-Schneider, and L. Maier-Hein, “Labelling instructions matter in biomedical image analysis,” Nature Machine Intelligence, vol. 5, no. 3, pp. 273–283, 2023.
  59. L. de Bruijn, “Inter-Annotator Agreement (IAA),” https://towardsdatascience.com/inter-annotator-agreement-2f46c6d37bf3, 2020, [Online; accessed 29-October-2023].
  60. J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data.” Biometrics, vol. 33 1, pp. 159–74, 1977. [Online]. Available: https://api.semanticscholar.org/CorpusID:11077516

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com