The harmonic oscillator on the Moyal-Groenewold plane: an approach via Lie groups and twisted Weyl tuples (2312.06143v8)
Abstract: This paper investigates the functional calculus of the harmonic oscillator on each Moyal-Groenewold plane, the noncommutative phase space which is a fundamental object in quantum mechanics. Specifically, we show that the harmonic oscillator admits a bounded $\mathrm{H}\infty(\Sigma_\omega)$ functional calculus for any angle $0 < \omega < \frac{\pi}{2}$ and even a bounded H\"ormander functional calculus on the associated noncommutative $\mathrm{L}p$-spaces, where $\Sigma_\omega={ z \in \mathbb{C}*: |\arg z| <\omega }$. To achieve these results, we develop a connection with the theory of 2-step nilpotent Lie groups by introducing a notion of twisted Weyl tuple and connecting it to some semigroups of operators previously investigated by Robinson via group representations. Along the way, we demonstrate that $\mathrm{L}p$-square-max decompositions lead to new insights between noncommutative ergodic theory and $R$-boundedness, and we prove a twisted transference principle, which is of independent interest. Our approach accommodates the presence of a constant magnetic field and they are indeed new even in the framework of magnetic Weyl calculus on classical $\mathrm{L}p$-spaces. Our results contribute to the understanding of functional calculi on noncommutative spaces and have implications for the maximal regularity of the most basic evolution equations associated to the harmonic oscillator.
- Quantum fields on the Groenewold-Moyal plane. Internat. J. Modern Phys. A23 (2008), no. 11, 1637–1677.
- H. Ando, U. Haagerup and C. Winsløw. Ultraproducts, QWEP von Neumann algebras, and the Effros-Maréchal topology. J. Reine Angew. Math. 715 (2016), 231–250.
- Multiplicateurs sur certains espaces symétriques. (French) Amer. J. Math. 108 (1986), no. 6, 1303–1353.
- J.-P. Anker. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT Fourier multipliers on Riemannian symmetric spaces of the noncompact type. Ann. of Math. (2) 132 (1990), no. 3, 597–628.
- Projections, multipliers and decomposable maps on noncommutative LpsuperscriptL𝑝\mathrm{L}^{p}roman_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Mém. Soc. Math. Fr. (N.S.) (2023), no. 177.
- W. Arendt. Semigroups and evolution equations: functional calculus, regularity and kernel estimates. North-Holland Publishing Co., Amsterdam, 2004, Handb. Differ. Equ., 1–85.
- One-parameter semigroups of positive operators. Lecture Notes in Math. 1184, Springer-Verlag, Berlin, 1986.
- Vector-valued Laplace transforms and Cauchy problems. Second edition. Monographs in Mathematics, 96. Birkhäuser/Springer Basel AG, Basel, 2011.
- A. P. Balachandran, B. A. Qureshi. Noncommutative geometry: fuzzy spaces, the Groenewold-Moyal plane. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications (2006) Vol. 2, page Paper 094, 9 p.
- Gaussian quantum information over general quantum kinematical systems I: Gaussian states. Preprint, arXiv:2204.08162.
- E. Berkson, T. A. Gillespie and P. S. Muhly. Generalized analyticity in UMD spaces. Ark. Mat. 27 (1989), no. 1, 1–14.
- E. Berkson, M. Paluszynski and G. Weiss. Transference couples and their applications to convolution operators and maximal operators. Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994), 69–84. Lecture Notes in Pure and Appl. Math., 175 Marcel Dekker, Inc., New York, 1996.
- D. Blecher and C. Le Merdy. Operator algebras and their modules-an operator space approach. London Mathematical Society Monographs. New Series, 30. Oxford Science Publications. The Clarendon Press, Oxford University Press, Oxford, 2004.
- An introduction to the geometrical analysis of vector fields—with applications to maximum principles and Lie groups.. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
- S. Blunck. A Hörmander-type spectral multiplier theorem for operators without heat kernel. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 3, 449–459.
- A. Bonfiglioli, E. Lanconelli and F. Uguzzoni. Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monogr. Math. Springer, Berlin, 2007.
- S. Brain and W. D. van Suijlekom. The ADHM construction of instantons on noncommutative spaces. Rev. Math. Phys. 23 (2011), no. 3, 261–307.
- Spectral distances: results for Moyal plane and noncommutative torus. SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), Paper 026, 17 pp..
- The spectral distance in the Moyal plane. J. Geom. Phys. 61 (2011), no. 10, 1881–1897.
- Parabolic maximal functions associated with a distribution. II. Advances in Math. 24 (1977), no. 2, 101–171.
- Heat kernels for elliptic and sub-elliptic operators. Appl. Numer. Harmon. Anal. Birkhäuser/Springer, New York, 2011.
- D. Cardona. Sharp estimates for the Schrödinger equation associated with the twisted Laplacian. Rep. Math. Phys. 85 (2020), no. 1, 29–39.
- Spectral multipliers for the Kohn Laplacian on forms on the sphere in ℂnsuperscriptℂ𝑛\mathbb{C}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Geom. Anal. 27 (2017), no. 4, 3302–3338.
- M. Christ. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT bounds for spectral multipliers on nilpotent groups. Trans. Amer. Math. Soc. 328 (1991), no. 1, 73–81.
- L. Cladek. Radial Fourier multipliers in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and ℝ4superscriptℝ4\mathbb{R}^{4}blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. Anal. PDE 11 (2018), no. 2, 467–498.
- R. R. Coifman and G. Weiss. Transference methods in analysis. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31. American Mathematical Society, Providence, RI, 1976.
- Schur multipliers in Schatten-von Neumann classes. To appear in Annals of Math.
- A Hörmander-Mikhlin theorem for high rank simple Lie groups. Preprint, arXiv:2201.08740.
- L.J. Corwin and F. P. Greenleaf. Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples. Cambridge Stud. Adv. Math., 18 Cambridge University Press, Cambridge, 1990.
- Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. Studia Math. 111 (1994), no. 2, 103–121.
- J. Cygan. Heat kernels for class 2 nilpotent groups. Studia Math. 64 (1979), no. 3, 227–238.
- L. Dabrowski, G. Landi and F. Luef. Sigma-model solitons on noncommutative spaces. Lett. Math. Phys. 105 (2015), no. 12, 1663–1688.
- R. Denk. An introduction to maximal regularity for parabolic evolution equations. Springer, Proc. Math. Stat., 346, Singapore, 2021, 1–70.
- M. R. Douglas and N. A. Nekrasov. Noncommutative field theory. Rev. Mod. Phys. 73 (2001), 977.
- N. Dungey, A. F. M. ter Elst and D. Robinson. Analysis on Lie groups with polynomial growth. Progress in Mathematics, 214. Birkhäuser Boston, Inc., Boston, MA, 2003. viii+312 pp.
- X. T. Duong. From the L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT norms of the complex heat kernels to a Hörmander multiplier theorem for sub-Laplacians on nilpotent Lie groups. Pacific J. Math. 173 (1996), no. 2, 413–424.
- X. T. Duong, E. M. Ouhabaz and A. Sikora. Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196 (2002), no. 2, 443–485.
- P. Eberlein. Geometry of 2-step nilpotent groups with a left invariant metric. Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 5, 611–660.
- C. M. Edwards and J. T. Lewis. Twisted group algebras. I. Comm. Math. Phys. 13 (1969), 119–130.
- E. G. Effros and Z.-J. Ruan. Operator spaces. Oxford University Press, 2000.
- Operator theoretic aspects of ergodic theory. Graduate Texts in Mathematics, 272. Springer, Cham, 2015.
- A. F. M. ter Elst and D. W. Robinson. Subelliptic operators on Lie groups. Proc. Centre Math. Appl. Austral. Nat. Univ., 29. Canberra, 1992, 63–72.
- One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.
- A short course on operator semigroups. Universitext. Springer, New York, 2006.
- S. Fackler. Regularity Properties of Sectorial Operators: Extrapolation, Counterexamples and Generic Classes. PhD thesis, Universität Ulm, 2014.
- G. Fendler. Dilations of one parameter semigroups of positive contractions on Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT spaces. Canad. J. Math. 49 (1997), no. 4, 736–748.
- Quantization on nilpotent Lie groups. Progr. Math., 314. Birkhäser/Springer 2016.
- G. B. Folland. A course in abstract harmonic analysis. Second edition. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2016.
- Quantum Harmonic Analysis on locally compact abelian groups. Preprint, arXiv:2308.02078.
- L. Gao, M. Junge and E. McDonald. Quantum Euclidean spaces with noncommutative derivatives. J. Noncommut. Geom. 16 (2022), no. 1, 153–213.
- Functional calculus for the Ornstein-Uhlenbeck operator. J. Funct. Anal. 183 (2001), no. 2, 413–450.
- Moyal planes are spectral triples. Comm. Math. Phys. 246 (2004), no. 3, 569–623.
- The spectral action for Moyal phase. J. Math. Phys. 46 (2005), no. 4, 043503, 17 pp.
- Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommut. Geom. 7 (2013), no. 4, 939–979.
- M. Gerhold and O. M. Shalit. Bounded perturbations of the Heisenberg commutation relation via dilation theory. Proc. Amer. Math. Soc. 151 (2023), no. 9, 3949–3957.
- A. M. González-Pérez, M. Junge and J. Parcet. Smooth Fourier multipliers in group algebras via Sobolev dimension. Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 4, 879–925.
- A. M. González-Pérez, M. Junge and J. Parcet. Singular integrals in quantum Euclidean spaces. Mem. Amer. Math. Soc. 272 (2021), no. 1334, xiii+90 pp.
- L. Grafakos. Classical Fourier analysis. Third edition. Grad. Texts in Math., 249 Springer, New York, 2014.
- L. Grafakos. Some remarks on the Mikhlin-Hörmander and Marcinkiewicz multiplier theorems: a short historical account and a recent improvement. J. Geom. Anal. 31 (2021), no. 7, 6987–7007.
- H. J. Groenewold. On the principles of elementary quantum mechanics. Physica 12 (1946), 405–460.
- Renormalization of ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT-theory on noncommutative ℝ4superscriptℝ4\mathbb{R}^{4}blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT in the matrix base. Commun. Math. Phys. 256 (2005), no. 2, 305–374.
- The β𝛽\betaitalic_β-function in duality-covariant non-commutative ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT-theory. Eur. Phys. J. C 35, 277–282 (2004).
- Propagators for noncommutative field theories. Annales Henri Poincare 7 (2006), 1601–1628.
- Renormalization of Non-Commutative Φ44subscriptsuperscriptΦ44\Phi^{4}_{4}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT Field Theory in x𝑥xitalic_x Space. Commun. Math. Phys. 267, 515–542 (2006).
- M. Haase. The functional calculus for sectorial operators. Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006.
- Holomorphic Hörmander-Type Functional Calculus on Sectors and Strips. Preprint, arXiv:2204.03936.
- B. Hall. Quantum Theory for Mathematicians. Springer New York, 2013.
- W. Hebisch. A multiplier theorem for Schrödinger operators. Colloq. Math. 60/61 (1990), no. 2, 659–664.
- Spectral projections for the twisted Laplacian. Studia Math. 180 (2007), no. 2, 103–110.
- Y. Heo, F. Nazarov and A. Seeger. Radial Fourier multipliers in high dimensions. Acta Math. 206 (2011), no. 1, 55–92.
- Structure and geometry of Lie groups. Springer Monographs in Mathematics. Springer, New York, 2012.
- E. Hille and R. S. Phillips. Functional analysis and semi-groups. Third printing of the revised edition of 1957. American Mathematical Society Colloquium Publications, Vol. XXXI. American Mathematical Society, Providence, RI, 1974.
- G. Hong, B. Liao and S. Wang. Noncommutative maximal ergodic inequalities associated with doubling conditions. Duke Math. J. 170 (2021), no. 2, 205–246.
- G. Hong. Non-commutative ergodic averages of balls and spheres over Euclidean spaces. Ergodic Theory Dynam. Systems 40 (2020), no. 2, 418–436.
- G. Hong, X. Lai and L. Wang. Fourier restriction estimates on quantum Euclidean spaces. Adv. Math. 430 (2023), Paper No. 109232.
- G. Hong, S. Wang and X. Wang. Pointwise convergence of noncommutative Fourier series. Preprint, arXiv:1908.00240.
- L. Hörmander. Estimates for translation invariant operators in Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT spaces. Acta Math. 104 (1960), 93–140.
- L. Hörmander. The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition. Classics Math. Springer-Verlag, Berlin, 2003.
- Analysis in Banach spaces, Volume II: Probabilistic Methods and Operator Theory. Springer, 2018.
- A. D. Ionescu. Singular integrals on symmetric spaces of real rank one. Duke Math. J. 114 (2002), no. 1, 101–122.
- N. Jacob. Pseudo differential operators and Markov processes. Vol. I. Fourier analysis and semigroups. Imperial College Press, London, 2001.
- E. Jeong, S. Lee and J. Ryu. Almost everywhere convergence of Bochner–Riesz means for the twisted Laplacian. Preprint, arXiv:2303.02679.
- P. E. T. Jorgensen. Representations of differential operators on a Lie group. J. Funct. Anal. 20 (1975), no. 2, 105–135.
- M. Junge. Fubini’s theorem for ultraproducts of noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces. Canad. J. Math. 56 (2004), no. 5, 983–1021.
- M. Junge, C. Le Merdy and Q. Xu. H∞superscriptH\mathrm{H}^{\infty}roman_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT functional calculus and square functions on noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Astérisque 305. Paris: Société Mathématique de France (ISBN 978-2-85629-189-4/pbk). vi, 138 p. (2006).
- M. Junge, T. Mei and J. Parcet. Smooth Fourier multipliers on group von Neumann algebras. Geom. Funct. Anal. 24 (2014), no. 6, 1913–1980.
- M. Junge, T. Mei and J. Parcet. Noncommutative Riesz transforms-dimension free bounds and Fourier multipliers. J. Eur. Math. Soc. (JEMS) 20 (2018), no. 3, 529–595.
- A. Kaplan. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc. 258 (1980), no. 1, 147–153.
- A. Kaplan. Riemannian nilmanifolds attached to Clifford modules. Geom. Dedicata 11 (1981), no. 2, 127–136.
- A. Kaplan. On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15 (1983), no. 1, 35–42.
- T. Kato. On the commutation relation AB−BA=c𝐴𝐵𝐵𝐴𝑐AB-BA=citalic_A italic_B - italic_B italic_A = italic_c. Arch. Rational Mech. Anal. 10 (1962), 273–275.
- T. Kato. Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1976.
- The geometry of infinite-dimensional groups. Ergeb. Math. Grenzgeb. (3), 51. Springer-Verlag, Berlin, 2009.
- A. Kleppner. Continuity and measurability of multiplier and projective representations. J. Funct. Anal. 17 (1974), 214–226.
- C. Kriegler. Spectral mulipliers, R𝑅Ritalic_R-bounded homomorphisms and analytic diffusion semigroups. PhD Thesis, Karlsruhe, 2009.
- Spectral multiplier theorems via H∞superscriptH\mathrm{H}^{\infty}roman_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT calculus and R𝑅Ritalic_R-bounds. Math. Z. Journal Profile 289, no. 1-2, 405-444 (2018).
- P. C. Kunstmann and L. Weis. Maximal Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-regularity for parabolic equations, Fourier multiplier theorems and H∞superscriptH\mathrm{H}^{\infty}roman_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-functional calculus. Functional analytic methods for evolution equations, 65–311, Lecture Notes in Math., 1855, Springer, Berlin, 2004.
- C. P. Kunstmann and M. Uhl. Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces. J. Operator Theory 73 (2015), no. 1, 27–69.
- E. C. Lance. Hilbert C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-modules. A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995.
- L. D. Landau. Diamagnetismus der Metalle. Z. Phys. 64-629, (1930), 32–38.
- E. Langmann and R. J. Szabo. Duality in scalar field theory on noncommutative phase spaces. Physics Letters B, Volume 533 (2002), no 1–2, 168–177,
- R. P. Langlands. Some holomorphic semi-groups. Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 361–363.
- R. P. Langlands. Semi-groups and representations of Lie groups. Revised PhD Thesis, 2017 (original 1959). http://publications.ias.edu/rpl/section/3
- F. Latrémolière. Quantum locally compact metric spaces. J. Funct. Anal. 264 (2013), no. 1, 362–402.
- A calculus for magnetic pseudodifferential super operators. J. Math. Phys. 63 (2022), no.10, Paper No. 103506, 48 pp.
- M. S. Lein. Semiclassical Dynamics and Magnetic Weyl Calculus. PhD, Technischen Universität München, 2011.
- C. Le Merdy. H∞superscriptH\mathrm{H}^{\infty}roman_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-functional calculus and applications to maximal regularity. Publ. Math. UFR Sci. Tech. Besançon, 16, Univ. Franche-Comté, Besançon, 1999.
- C. Le Merdy. Two results about H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT functional calculus on analytic UMD Banach spaces. J. Aust. Math. Soc. 74 (2003), no. 3, 351–378.
- G. Levitina, F. Sukochev and D. Zanin. Cwikel estimates revisited. Proc. Lond. Math. Soc. (3) 120 (2020), no. 2, 265–304.
- W. Littman. Multipliers in Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT and interpolation. Bull. Amer. Math. Soc. 71 (1965), 764–766.
- Singular traces. Vol. 2. Trace formulas. De Gruyter Stud. Math., 46/2, De Gruyter, Berlin, 2023.
- E. Lorist. The ℓssuperscriptℓ𝑠\ell^{s}roman_ℓ start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT-boundedness of a family of integral operators on UMD Banach function spaces. Positivity and noncommutative analysis, 365–379, Trends Math., Birkhäuser/Springer, Cham, 2019.
- F. Lust-Piquard. Dimension free estimates for Riesz transforms associated to the harmonic oscillator on ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Potential Anal. 24 (2006), no. 1, 47–62.
- G. W. Mackey. Unitary representations of group extensions. I. Acta Math. 99 (1958), 265–311.
- Z. Magyar. Continuous linear representations. North-Holland Mathematics Studies, 168. North-Holland Publishing Co., Amsterdam, 1992.
- The magnetic Weyl calculus. J. Math. Phys. 45 (2004), no. 4, 1394–1417.
- The mathematical formalism of a particle in a magnetic field. Mathematical physics of quantum mechanics, 417–434. Lecture Notes in Phys., 690. Springer-Verlag, Berlin, 2006.
- M. Mantoiu, R. Purice and S. Richard. Twisted crossed products and magnetic pseudodifferential operators. Advances in operator algebras and mathematical physics, 137–172. Theta Ser. Adv. Math., 5 Theta, Bucharest, 2005.
- Spectral multipliers on 2-step groups: topological versus homogeneous dimension. Geom. Funct. Anal. 26 (2016), no. 2, 680–702.
- Vector-valued multipliers on stratified groups. Rev. Mat. Iberoamericana 6 (1990), no. 3-4, 141–154.
- E. McDonald. Nonlinear partial differential equations on noncommutative Euclidean spaces. Preprint, arXiv:2301.08306.
- E. McDonald, F. Sukochev and X. Xiong. Quantum differentiability on noncommutative Euclidean spaces. Comm. Math. Phys. 379 (2020), no. 2, 491–542.
- E. McDonald, F. Sukochev and D. Zanin. A C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebraic approach to the principal symbol II. Math. Ann. 374 (2019), no. 1-2, 273–322.
- S. Meda. A general multiplier theorem. Proc. Amer. Math. Soc. 110 (1990), no. 3, 639–647.
- S. G. Mikhlin. On the multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 701–703.
- S. Monniaux. Maximal regularity and applications to PDEs. Walter de Gruyter GmbH & Co. KG, Berlin, 2009, 247–287.
- V. Moretti. Spectral theory and quantum mechanics. Mathematical foundations of quantum theories, symmetries and introduction to the algebraic formulation. Unitext, 110. La Matematica per il 3+2. Springer, Cham, 2017.
- J. E. Moyal. Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc. 45 (1949), 99–124.
- M. Müller Product rule for gauge invariant Weyl symbols and its application to the semiclassical description of guiding centre motion. J. Phys. A 32 (1999), 1035–1052.
- D. Müller and E. M. Stein. On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. (9) 73 (1994), no. 4, 413–440.
- E. K. Narayanan. Multipliers for the twisted Laplacian. Colloq. Math. 97 (2003), no.2, 189–205.
- J. van Neerven and P. Portal. The Weyl calculus for group generators satisfying the canonical commutation relations. J. Oper. Theory 83, no. 2, 253–298 (2020).
- Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices. C. R. Math. Acad. Sci. Paris 361, 835–846 (2023).
- Instantons on noncommutative ℝ4superscriptℝ4\mathbb{R}^{4}blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, and (2,0)20(2,0)( 2 , 0 ) superconformal six-dimensional theory. Comm. Math. Phys. 198 (1998), no. 3, 689–703.
- L. Niedorf. Restriction type estimates and spectral multipliers on Métivier groups. Preprint, arXiv:2304.12960.
- N. Ozawa. About the QWEP conjecture. Internat. J. Math. 15 (2004), no. 5, 501–530.
- A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Appl. Math. Sci., 44, 1983.
- J.-P. Pier. Amenable locally compact groups. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1984.
- G. Pisier. Non-commutative vector valued Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces and completely p𝑝pitalic_p-summing maps. Astérisque. 247. Paris: Société Mathématique de France, iv, 130 p. (1998).
- G. Pisier. Complex interpolation between Hilbert, Banach and operator spaces. Mem. Amer. Math. Soc. 208 (2010), no. 978.
- Non-commutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. 1459–1517 in Handbook of the Geometry of Banach Spaces, Vol. II, edited by W.B. Johnson and J. Lindenstrauss, Elsevier, 2003.
- M. S. Raghunathan. Universal central Extensions. Reviews in Mathematical Physics, Vol. 06 (1994), no. 02, pp. 207–225.
- J. Randall. The heat kernel for generalized Heisenberg groups. J. Geom. Anal. 6 (1996), no.2, 287–316.
- M. A. Rieffel. Deformation quantization for actions of ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93 pp.
- V. Rivasseau. Non-commutative renormalization. Quantum spaces, 19–107. Prog. Math. Phys., 53 Birkhäuser Verlag, Basel, 2007.
- D. W. Robinson. Elliptic operators and Lie groups. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.
- Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-Lqsuperscript𝐿𝑞L^{q}italic_L start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT boundedness of Fourier multipliers on quantum Euclidean spaces. Preprint, arXiv:2312.00657.
- M. Schottenloher. A mathematical introduction to conformal field theory. Lecture Notes in Phys., 759, Springer-Verlag, Berlin, 2008.
- H. Sharma. Spectral Multiplier Theorems For Abstract Differential Operators. Doctoral thesis, Australian National University, 2022.
- Twisted convolution and Riesz means. J. Anal. Math. 76 (1998), 93–107.
- E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, no. 30, Princeton University Press, Princeton, N.J. 1970.
- X. Su, Y. Wang and G. Xu. A Mikhlin-type multiplier theorem for the partial harmonic oscillator. Forum Math. 35 (2023), no. 3, 831–841.
- Connes integration formula for the noncommutative plane. Comm. Math. Phys. 359 (2018), no. 2, 449–466.
- T. Sund. Remarks on locally compact group extensions. Math. Scand. 69 (1991), no. 2, 199–210.
- R. J. Szabo. Quantum field theory on noncommutative spaces. Physics Reports 378 (2003), Issue 4, Pages 207–299.
- M. Takesaki. Theory of operator algebras. II. Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer-Verlag, Berlin, 2003.
- S. Thangavelu. Harmonic analysis on the Heisenberg group. Birkhäuser Boston, Inc., Boston, MA, Progr. Math., 159, 1998.
- S. Thangavelu. An introduction to the uncertainty principle. Progr. Math., 217. Birkhäuser Boston, Inc., Boston, MA, 2004.
- S. Thangavelu. Hermite and Laguerre semigroups: some recent developments. Orthogonal families and semigroups in analysis and probability, 251–284. Sémin. Congr., 25 [Seminars and Congresses]. Société Mathématique de France, Paris, 2012.
- J. Tie. The twisted Laplacian on ℂnsuperscriptℂ𝑛\mathbb{C}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and the sub-Laplacian on HnsubscriptH𝑛\mathrm{H}_{n}roman_H start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Comm. Partial Differential Equations 31 (2006), no. 7-9, 1047–1069.
- H. Upmeier. Symmetric Banach manifolds and Jordan C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras. North-Holland Publishing Co., Math. Stud. 104, Amsterdam, 1985.
- V. S. Varadarajan. Geometry of quantum theory. Second edition. Springer-Verlag, New York, 1985.
- M. W. Wong. Weyl transforms, the heat kernel and Green function of a degenerate elliptic operator. Ann. Global Anal. Geom. 28 (2005), no.3, 271–283.
- M. W. Wong. Partial differential equations—topics in Fourier analysis.Second edition CRC Press, Boca Raton, FL, 2023.
- B. Wróbel. On the consequences of a Mihlin-Hörmander functional calculus: maximal and square function estimates. Math. Z. 287 (2017), no. 1-2, 143–153.
- R. Wulkenhaar. Quantum field theory on noncommutative spaces. Advances in noncommutative geometry–on the occasion of Alain Connes’ 70th birthday, 607–690. Springer, Cham, 2019.
- The heat kernel on H𝐻Hitalic_H-type groups. Proc. Amer. Math. Soc. 136 (2008), no.4, 1457–1464.