Learning Differentiable Particle Filter on the Fly (2312.05955v3)
Abstract: Differentiable particle filters are an emerging class of sequential Bayesian inference techniques that use neural networks to construct components in state space models. Existing approaches are mostly based on offline supervised training strategies. This leads to the delay of the model deployment and the obtained filters are susceptible to distribution shift of test-time data. In this paper, we propose an online learning framework for differentiable particle filters so that model parameters can be updated as data arrive. The technical constraint is that there is no known ground truth state information in the online inference setting. We address this by adopting an unsupervised loss to construct the online model updating procedure, which involves a sequence of filtering operations for online maximum likelihood-based parameter estimation. We empirically evaluate the effectiveness of the proposed method, and compare it with supervised learning methods in simulation settings including a multivariate linear Gaussian state-space model and a simulated object tracking experiment.
- N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian state estimation,” in IEE Proc. F (Radar and Signal Process.), vol. 140, 1993, pp. 107–113.
- P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Miguez, “Particle filtering,” IEEE Signal Process. Mag., vol. 20, no. 5, pp. 19–38, 2003.
- A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for bayesian filtering,” Stat. Comput, vol. 10, no. 3, pp. 197–208, 2000.
- X. Qian, A. Brutti, M. Omologo, and A. Cavallaro, “3d audio-visual speaker tracking with an adaptive particle filter,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process (ICASSP), 2017, pp. 2896–2900.
- D. Creal, “A survey of sequential Monte Carlo methods for economics and finance,” Econometric Rev., vol. 31, no. 3, pp. 245–296, 2012.
- C. Pozna, R.-E. Precup, E. Horváth, and E. M. Petriu, “Hybrid particle filter–particle swarm optimization algorithm and application to fuzzy controlled servo systems,” IEEE Trans. Fuzzy Syst., vol. 30, no. 10, pp. 4286–4297, 2022.
- N. Kantas, A. Doucet, S. S. Singh, and J. M. Maciejowski, “An overview of sequential Monte Carlo methods for parameter estimation in general state-space models,” IFAC Proc. Vol., vol. 42, no. 10, pp. 774–785, 2009.
- N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski, and N. Chopin, “On particle methods for parameter estimation in state-space models,” Stat. Sci., 2015.
- A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet, “Differentiable particle filtering via entropy-regularized optimal transport,” in Proc. Int. Conf. Mach. Learn. (ICML), 2021, pp. 2100–2111.
- P. Karkus, D. Hsu, and W. S. Lee, “Particle filter networks with application to visual localization,” in Proc. Conf. Robot. Learn. (CoRL), Zürich, Switzerland, 2018, pp. 169–178.
- X. Chen and Y. Li, “An overview of differentiable particle filters for data-adaptive sequential bayesian inference,” arXiv preprint arXiv:2302.09639, 2023.
- R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable particle filters: end-to-end learning with algorithmic priors,” in Proc. Robot.: Sci. and Syst. (RSS), Pittsburgh, Pennsylvania, July 2018.
- X. Chen, H. Wen, and Y. Li, “Differentiable particle filters through conditional normalizing flow,” in Proc. IEEE Int. Conf. Inf. Fusion. (FUSION), 2021, pp. 1–6.
- F. Gama, N. Zilberstein, M. Sevilla, R. Baraniuk, and S. Segarra, “Unsupervised learning of sampling distributions for particle filters,” arXiv preprint arXiv:2302.01174, 2023.
- C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte Carlo methods,” J. R. Stat. Soc. Ser. B. Stat. Methodol., vol. 72, no. 3, pp. 269–342, 2010.
- N. Chopin, P. E. Jacob, and O. Papaspiliopoulos, “SMC2: an efficient algorithm for sequential analysis of state space models,” J. R. Stat. Soc. Ser. B. Stat. Methodol., vol. 75, no. 3, pp. 397–426, 2013.
- D. Crisan and J. MÍguez, “Nested particle filters for online parameter estimation in discrete-time state-space Markov models,” Bernoulli, vol. 24, no. 4A, pp. 3039–3086, 2018.
- X. Chen and Y. Li, “Conditional measurement density estimation in sequential Monte Carlo via normalizing flow,” in Proc. Euro. Sig. Process. Conf. (EUSIPCO), 2022, pp. 782–786.
- E. L. Ionides, C. Bretó, and A. A. King, “Inference for nonlinear dynamical systems,” Proc. Natl. Acad. Sci., vol. 103, no. 49, pp. 18 438–18 443, 2006.
- E. L. Ionides, D. Nguyen, Y. Atchadé, S. Stoev, and A. A. King, “Inference for dynamic and latent variable models via iterated, perturbed bayes maps,” Proc. Natl. Acad. Sci., vol. 112, no. 3, pp. 719–724, 2015.
- R. Douc and O. Cappé, “Comparison of resampling schemes for particle filtering,” in Proc. Int. Symp. Image and Signal Process. and Anal., Zagreb, Croatia, 2005.
- T. A. Le, M. Igl, T. Rainforth, T. Jin, and F. Wood, “Auto-encoding sequential Monte Carlo,” in Proc. Int. Conf. Learn. Rep. (ICLR), Vancouver, Canada, Apr. 2018.
- C. J. Maddison, J. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and Y. Teh, “Filtering variational objectives,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 30, 2017.
- C. Naesseth, S. Linderman, R. Ranganath, and D. Blei, “Variational sequential Monte Carlo,” in Proc. Int. Conf. Artif. Intel. and Stat. (AISTATS), Playa Blanca, Spain, Apr. 2018.
- N. Chopin, O. Papaspiliopoulos, N. Chopin, and O. Papaspiliopoulos, “Particle filtering,” An Introduction to Sequential Monte Carlo, pp. 129–165, 2020.
- M. F. Bugallo, S. Xu, and P. M. Djurić, “Performance comparison of ekf and particle filtering methods for maneuvering targets,” Digit. Signal Process., vol. 17, no. 4, pp. 774–786, 2007.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. on Learn. Represent. (ICLR), San Diego, USA, May 2015.