Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the rank of the communication matrix for deterministic two-way finite automata (2312.05909v1)

Published 10 Dec 2023 in cs.FL, math.CO, and math.RT

Abstract: The communication matrix for two-way deterministic finite automata (2DFA) with $n$ states is defined for an automaton over a full alphabet of all $(2n+1)n$ possible symbols: its rows and columns are indexed by strings, and the entry $(u, v)$ is $1$ if $uv$ is accepted by the automaton, and $0$ otherwise. With duplicate rows and columns removed, this is a square matrix of order $n(nn-(n-1)n)+1$, and its rank is known to be a lower bound on the number of states necessary to transform an $n$-state 2DFA to a one-way unambiguous finite automaton (UFA). This paper determines this rank, showing that it is exactly $f(n)=\sum_{k=1}n \binom{n}{k-1} \binom{n}{k} \binom{2k-2}{k-1} =(1+o(1)) \frac{3\sqrt{3}}{8\pi n} 9n$, and this function becomes the new lower bound on the state complexity of the 2DFA to UFA transformation, thus improving a recent lower bound by S. Petrov and Okhotin (``On the transformation of two-way deterministic finite automata to unambiguous finite automata'', Inf. Comput., 2023). The key element of the proof is determining the rank of a $k! \times k!$ submatrix, with its rows and columns indexed by permutations, where the entry $(\pi, \sigma)$ is $1$ if $\sigma \circ \pi$ is a cycle of length $k$, and 0 otherwise; using the methods of group representation theory it is shown that its rank is exactly $\binom{2k-2}{k-1}$, and this implies the above formula for $f(n)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A. V. Aho, J. D. Ullman, M. Yannakakis, “On notions of information transfer in VLSI circuits”, Proceedings of 15th ACM STOC, ACM 1983, pp. 133–139.
  2. J.-C. Birget, “Intersection and union of regular languages and state complexity”, Information Processing Letters, 43 (1992), 185–190.
  3. J.-C. Birget, “State-complexity of finite-state devices, state compressibility and incompressibility”, Mathematical Systems Theory, 26:3 (1993), 237–269.
  4. M. Chrobak, “Finite automata and unary languages”, Theoretical Computer Science, 47 (1986), 149–158. Errata: 302 (2003), 497–498.
  5. J. E. Cohen, U. G. Rothblum, “Nonnegative ranks, decompositions, and factorizations of nonnegative matrices”, Linear Algebra and its Applications, 190 (1993), 149–168.
  6. W. Czerwiński, M. Dębski, T. Gogasz, G. Hoi, S. Jain, M. Skrzypczak, F. Stephan, Ch. Tan, “Languages given by finite automata over the unary alphabet”, arXiv:2302.06435 [cs.FL] (2023).
  7. P. Ďuriš, Juraj Hromkovič, J. D. P. Rolim, G. Schnitger, “Las Vegas Versus Determinism for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations”, STACS 1997, LNCS 1200, 117–128.
  8. V. Geffert, C. Mereghetti, G. Pighizzini, “Converting two-way nondeterministic unary automata into simpler automata”, Theoretical Computer Science, 295:1–3 (2003), 189–203.
  9. V. Geffert, C. Mereghetti, G. Pighizzini, “Complementing two-way finite automata”, Information and Computation, 205:8 (2007), 1173–1187.
  10. V. Geffert, A. Okhotin, “Transforming two-way alternating finite automata to one-way nondeterministic automata”, Mathematical Foundations of Computer Science (MFCS 2014, Budapest, Hungary, 25–29 August 2014), Part I, LNCS 8634, 291–302.
  11. V. Geffert, A. Okhotin, “Deterministic one-way simulation of two-way deterministic finite automata over small alphabets”, Descriptional Complexity of Formal Systems 2021, LNCS 13037, 26–37.
  12. I. Glaister, J. Shallit, “A lower bound technique for the size of nondeterministic finite automata”, Information Processing Letters, 59:2 (1996), 75–77.
  13. M. Göös, S. Kiefer, W. Yuan, “Lower bounds for unambiguous automata via communication complexity”, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022, July 4–8, 2022, Paris, France), LIPIcs 229, 126:1–126:13.
  14. J. Hromkovič, S. Seibert, J. Karhumäki, H. Klauck, G. Schnitger, “Communication complexity method for measuring nondeterminism in finite automata”, Information and Computation, 172 (2002), 202–217.
  15. E. Indzhev, S. Kiefer, “On complementing unambiguous automata and graphs with many cliques and cocliques”, Information Processing Letters, 177 (2022), article 106270.
  16. J. Jirásek Jr., G. Jirásková, J. Šebej, “Operations on unambiguous finite automata”, International Journal of Foundations of Computer Science, 29:5 (2018), 861–876.
  17. C. A. Kapoutsis, “Removing bidirectionality from nondeterministic finite automata”, Mathematical Foundations of Computer Science (MFCS 2005, Gdansk, Poland, 29 August–2 September 2005), LNCS 3618, 544–555.
  18. C. A. Kapoutsis, “Two-way automata versus logarithmic space”, Theory of Computing Systems, 55:2 (2014), 421–447.
  19. C. A. Kapoutsis, G. Pighizzini, “Two-way automata characterizations of L/poly versus NL”, Theory of Computing Systems, 56:4 (2015), 662–685.
  20. M. Kunc, A. Okhotin, “Describing periodicity in two-way deterministic finite automata using transformation semigroups”, Developments in Language Theory (DLT 2011, Milan, Italy, 19–22 July 2011), LNCS 6795, 324–336.
  21. H. Leung, “Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata”, SIAM Journal on Computing, 27:4 (1998), 1073–1082.
  22. H. Leung, “Descriptional complexity of NFA of different ambiguity”, International Journal of Foundations of Computer Science, 16:5 (2005), 975–984.
  23. C. Mereghetti, G. Pighizzini, “Optimal simulations between unary automata”, SIAM Journal on Computing, 30:6 (2001), 1976–1992.
  24. F. R. Moore, “On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata”, IEEE Transactions on Computers, 20 (1971), 1211–1214.
  25. A. Okhotin, “Unambiguous finite automata over a unary alphabet”, Information and Computation, 212 (2012), 15–36.
  26. F. Petrov, “Logarithmic asymptotics of Landau–Okhotin function”, Acta Mathematica Hungarica, 169 (2023), 272–276.
  27. S. Petrov, A. Okhotin, “On the transformation of two-way deterministic finite automata to unambiguous finite automata”, Information and Computation, 295A (2023), article 104956.
  28. J.-E. Pin, “On the languages accepted by finite reversible automata”, Automata, Languages and Programming (ICALP 1987, Karlsruhe, Germany, 13–17 July 1987), LNCS 267, 237–249.
  29. M. Radionova, A. Okhotin, “Sweeping permutation automata”, Non-Classical Models of Automata and Applications (NCMA 2023, Famagusta, North Cyprus, 18–19 September 2023), EPTCS 388, 110–124.
  30. M. Raskin, “A superpolynomial lower bound for the size of non-deterministic complement of an unambiguous automaton”, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018, Prague, Czech Republic, July 9–13, 2018), LIPIcs 107.
  31. J. C. Shepherdson, “The reduction of two-way automata to one-way automata”, IBM Journal of Research and Development, 3 (1959), 198–200.
  32. M. Vardi, “A note on the reduction of two-way automata to one-way automata”, Information Processing Letters, 30:5 (1989), 261–264.
  33. S. A. Vavasis, “On the complexity of nonnegative matrix factorization”, SIAM Journal on Optimization, 20:3 (2009), 1364–1377.

Summary

We haven't generated a summary for this paper yet.