Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wild Motion Unleashed: Markerless 3D Kinematics and Force Estimation in Cheetahs (2312.05879v1)

Published 10 Dec 2023 in cs.CV

Abstract: The complex dynamics of animal manoeuvrability in the wild is extremely challenging to study. The cheetah ($\textit{Acinonyx jubatus}$) is a perfect example: despite great interest in its unmatched speed and manoeuvrability, obtaining complete whole-body motion data from these animals remains an unsolved problem. This is especially difficult in wild cheetahs, where it is essential that the methods used are remote and do not constrain the animal's motion. In this work, we use data obtained from cheetahs in the wild to present a trajectory optimisation approach for estimating the 3D kinematics and joint torques of subjects remotely. We call this approach kinetic full trajectory estimation (K-FTE). We validate the method on a dataset comprising synchronised video and force plate data. We are able to reconstruct the 3D kinematics with an average reprojection error of 17.69 pixels (62.94 $\%$ PCK using the nose-to-eye(s) length segment as a threshold), while the estimates produce an average root-mean-square error of 171.3 N ($\approx$ 17.16 $\%$ of peak force during stride) for the estimated ground reaction force when compared against the force plate data. While the joint torques cannot be directly validated against ground truth data, as no such data is available for cheetahs, the estimated torques agree with previous studies of quadrupeds in controlled settings. These results will enable deeper insight into the study of animal locomotion in a more natural environment for both biologists and roboticists.

Summary

We haven't generated a summary for this paper yet.