Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Copula modeling and uncertainty propagation in field-scale simulation of CO$_2$ fault leakage (2312.05851v1)

Published 10 Dec 2023 in math.NA, cs.NA, and physics.comp-ph

Abstract: Subsurface storage of CO$_2$ is an important means to mitigate climate change, and to investigate the fate of CO$_2$ over several decades in vast reservoirs, numerical simulation based on realistic models is essential. Faults and other complex geological structures introduce modeling challenges as their effects on storage operations are uncertain due to limited data. In this work, we present a computational framework for forward propagation of uncertainty, including stochastic upscaling and copula representation of flow functions for a CO$_2$ storage site using the Vette fault zone in the Smeaheia formation in the North Sea as a test case. The upscaling method leads to a reduction of the number of stochastic dimensions and the cost of evaluating the reservoir model. A viable model that represents the upscaled data needs to capture dependencies between variables, and allow sampling. Copulas provide representation of dependent multidimensional random variables and a good fit to data, allow fast sampling, and coupling to the forward propagation method via independent uniform random variables. The non-stationary correlation within some of the upscaled flow function are accurately captured by a data-driven transformation model. The uncertainty in upscaled flow functions and other parameters are propagated to uncertain leakage estimates using numerical reservoir simulation of a two-phase system. The expectations of leakage are estimated by an adaptive stratified sampling technique, where samples are sequentially concentrated to regions of the parameter space to greedily maximize variance reduction. We demonstrate cost reduction compared to standard Monte Carlo of one or two orders of magnitude for simpler test cases with only fault and reservoir layer permeabilities assumed uncertain, and factors 2--8 cost reduction for stochastic multi-phase flow properties and more complex stochastic models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. K. Aas and D. Berg. Models for construction of multivariate dependence – a comparison study. Eur. J. Financ., 15(7-8):639–659, 2009.
  2. OPM Flow Reference Manual (2021-10). Open Porous Media Initiative. \urlhttps://opm-project.org/?page_id=955.
  3. K. Aziz and A. Settari. Petroleum Reservoir Simulation. Springer Netherlands, 1979.
  4. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal., 45(3):1005–1034, 2007.
  5. T. Bedford and R. M. Cooke. Vines–a new graphical model for dependent random variables. Ann. Stat., 30(4):1031–1068, 2002.
  6. Impact of deformation bands on fault-related fluid flow in field-scale simulations. Int. J. Greenh. Gas Con., 119:103729, 2022.
  7. Recent development in copula and its applications to the energy, forestry and environmental sciences. Int. J. Hydrogen Energ., 44(36):19453–19473, 2019.
  8. Upscaled geocellular flow model of potential across-and along-fault leakage using shale gouge ratio. In proceedings of TCCS, Trondheim, 2021.
  9. Overburden fluid migration along the Vette Fault Zone, North Sea, using different fault permeability models. 2022(1):1–5, 2022.
  10. Fault facies and its application to sandstone reservoirs. AAPG bulletin, 93(7):891–917, 2009.
  11. E. C. Brechmann and U. Schepsmeier. Modeling dependence with C- and D-vine copulas: The R package CDVine. J. Stat. Softw., 52(3):1–27, 2013.
  12. Royal Harvard Brooks. Hydraulic properties of porous media. Colorado State University, 1965.
  13. A method for estimation of the density of fault displacements below the limits of seismic resolution in reservoir formations. In A. T. Buller, E. Berg, O. Hjelmeland, J. Kleppe, O. Torsæter, and J. O. Aasen, editors, North Sea Oil and Gas Reservoirs—II, pages 309–318. Springer Netherlands, 1990.
  14. C. Czado and T. Nagler. Vine copula based modeling. Annu. Rev. Stat. Appl., 9:453–477, 2022.
  15. Estimating the probability of CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT leakage using rare event simulation. In ECMOR XIV-14th European conference on the mathematics of oil recovery, volume 2014, pages 1–9. European Association of Geoscientists & Engineers, 2014.
  16. On adaptive stratification. Ann. Oper. Res., 89(1):127–154, 2011.
  17. European Union (Convention). UNFCCC greenhouse gas inventory data, 2022. Available at \urlhttps://di.unfccc.int/flex_annex1.
  18. Treatment of faults in production simulation models. Geol. Soc. Spec. Publ., 292(1):219–233, 2007.
  19. Dumux: Dune for multi-{{\{{phase, component, scale, physics,…}}\}} flow and transport in porous media. Adv. Water Res., 34(9):1102–1112, 2011.
  20. Fault seal mapping – incorporating geometric and property uncertainty. Geol. Soc. Spec. Publ., 309(1):5–38, 2008.
  21. Probit transformation for nonparametric kernel estimation of the copula density. Bernoulli, 23(3):1848–1873, 2017.
  22. M. B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259–328, 2015.
  23. H. Gross and A. Mazuyer. Geosx: A multiphysics, multilevel simulator designed for exascale computing. In SPE Reservoir Simulation Conference. OnePetro, 2021.
  24. CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT storage atlas Norwegian North Sea. Norwegian Petroleum Directorate, PO Box, 600, 2011.
  25. H. Joe. Families of m𝑚mitalic_m-variate distributions with given margins and m⁢(m−1)/2𝑚𝑚12m(m-1)/2italic_m ( italic_m - 1 ) / 2 bivariate dependence parameters. In L. Rüschendorf, B. Schweizer, and M. D. Taylor, editors, Distributions with Fixed Marginals and Related Topics, volume 28, pages 120–141, Hayward, CA, 1996. Institute of Mathematical Statistics.
  26. H. Joe. Multivariate models and multivariate dependence concepts. CRC press, 1997.
  27. Faulting and fault sealing in production simulation models: Brent province, northern North Sea. Petrol. Geosci., 13(4):321–340, 2007.
  28. Analytical solutions for two-phase subsurface flow to a leaky fault considering vertical flow effects and fault properties. Water Resour. Res., 50(4):3536–3552, 2014.
  29. Bayesian estimates of equation system parameters: An application of integration by Monte Carlo. Econometrica, 46(1):1–19, 1978.
  30. D. Kolyukhin and J. Tveranger. Statistical modelling of fault core and deformation band structure in fault damage zones. 06 2015.
  31. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nat. Rev. Earth Environ., 2023.
  32. Package ’ADSS’. 2023.
  33. Sequential estimation using hierarchically stratified domains with Latin hypercube sampling, 2023.
  34. P. L’Ecuyer and C. Lemieux. Recent advances in randomized Quasi-Monte Carlo methods. In M. Dror, P. L’Ecuyer, and F. Szidarovszky, editors, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, International Series in Operations Research & Management Science, pages 419–474. Springer, New York, NY, 2002.
  35. MoC Leverett. Capillary behavior in porous solids. Transactions of the AIME, 142(01):152–169, 1941.
  36. K.-A. Lie. An introduction to reservoir simulation using MATLAB/GNU Octave: User guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge University Press, 2019.
  37. Faults in conventional flow simulation models: a consideration of representational assumptions and geological uncertainties. Petrol. Geosci., 14(1):91–110, 2008.
  38. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245, 1979.
  39. Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT storage. Solid Earth, 12(6):1259–1286, 2021.
  40. Package ‘vinecopula’. 2022.
  41. A review of fault sealing behaviour and its evaluation in siliciclastic rocks. Earth-Sci. Rev., 150:121–138, 2015.
  42. Karhunen–Loeve expansion revisited for vector-valued random fields: Scaling, errors and optimal basis. J. Comput. Phys., 242:607–622, 2013.
  43. P. Pettersson and S. Krumscheid. Adaptive stratified sampling for nonsmooth problems. Int. J. Uncertain. Quan., 12(6):71–99, 2022.
  44. Dynamic estimates of extreme-case CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT storage capacity for basin-scale heterogeneous systems under geological uncertainty. Int. J. Greenh. Gas Con., 116:103613, 2022.
  45. K. Pruess. TOUGH2 - a general-purpose numerical simulator for multiphase fluid and heat flow. 1991.
  46. Analytical approximations for effective relative permeability in the capillary limit. Water Resour. Res., 52(10):7645–7667, 2016.
  47. Probabilistic analysis of Vette fault stability in potential CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT storage site Smeaheia, offshore Norway. Int. J. Greenh. Gas Con., 108:103315, 2021.
  48. The open porous media flow reservoir simulator. Comput. Math. Appl., 81:159–185, 2021.
  49. Maturing global CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT storage resources on offshore continental margins to achieve 2DS emissions reductions. Sci Rep, 9(1):17944, 2019.
  50. M. Rosenblatt. Remarks on a multivariate transformation. Ann. Math. Stat., 23(3):470–472, 1952.
  51. Convective dissolution in field scale CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT storage simulations using the OPM flow simulator. In TCCS–11. CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT Capture, Transport and Storage. Trondheim 22nd–23rd June 2021 Short Papers from the 11th International Trondheim CCS Conference. SINTEF Academic Press, 2021.
  52. Simulators for the gigaton storage challenge. A benchmark study on the regional Smeaheia model. In EAGE GeoTech 2022 Sixth EAGE Workshop on CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT Geological Storage, volume 2022, pages 1–5. European Association of Geoscientists & Engineers, 2022.
  53. Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: Statistical analysis of field data. J. Struct. Geol., 52:148–162, 2013.
  54. M. D. Shields. Refined Latinized stratified sampling: A robust sequential sample size extension methodology for high-dimensional Latin hypercube and stratified designs. Int. J. Uncertain. Quan., 6(1):79–97, 2016.
  55. Refined stratified sampling for efficient Monte Carlo based uncertainty quantification. Reliab. Eng. Syst. Safe., 142:310–325, 2015.
  56. M. Sklar. Fonctions de répartition à n𝑛nitalic_n dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8:229–231, 1959.
  57. Empirical estimation of fault rock properties. In A. G. Koestler and R. Hunsdale, editors, Hydrocarbon Seal Quantification, volume 11 of Norwegian Petroleum Society (NPF), Special Publications, page 109–125. 2002.
  58. Significance of fault seal in assessing CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT storage capacity and containment risks - an example from the Horda Platform, northern North Sea. Petrol. Geosci., 27(3):petgeo2020–102, 2021.
  59. D. Xiu and G. Em. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.
  60. Quantitative fault seal prediction. AAPG Bulletin, 81(6):897–917, 1997.
Citations (1)

Summary

We haven't generated a summary for this paper yet.