Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthesis of Temporally-Robust Policies for Signal Temporal Logic Tasks using Reinforcement Learning (2312.05764v2)

Published 10 Dec 2023 in eess.SY and cs.SY

Abstract: This paper investigates the problem of designing control policies that satisfy high-level specifications described by signal temporal logic (STL) in unknown, stochastic environments. While many existing works concentrate on optimizing the spatial robustness of a system, our work takes a step further by also considering temporal robustness as a critical metric to quantify the tolerance of time uncertainty in STL. To this end, we formulate two relevant control objectives to enhance the temporal robustness of the synthesized policies. The first objective is to maximize the probability of being temporally robust for a given threshold. The second objective is to maximize the worst-case spatial robustness value within a bounded time shift. We use reinforcement learning to solve both control synthesis problems for unknown systems. Specifically, we approximate both control objectives in a way that enables us to apply the standard Q-learning algorithm. Theoretical bounds in terms of the approximations are also derived. We present case studies to demonstrate the feasibility of our approach.

Citations (5)

Summary

We haven't generated a summary for this paper yet.