Decay estimates for Cayley transforms and inverses of semigroup generators via the $\mathcal{B}$-calculus (2312.05692v2)
Abstract: Let $-A$ be the generator of a bounded $C_0$-semigroup $(e{-tA})_{t \geq 0}$ on a Hilbert space. First we study the long-time asymptotic behavior of the Cayley transform $V_{\omega}(A) := (A-\omega I) (A+\omega I){-1}$ with $\omega >0$. We give a decay estimate for $|V_{\omega}(A)nA{-1}|$ when $(e{-tA})_{t \geq 0}$ is polynomially stable. Considering the case where the parameter $\omega$ varies, we estimate $|(\prod_{k=1}n V_{\omega_k}(A))A{-1}|$ for exponentially stable $C_0$-semigroups $(e{-tA})_{t \geq 0}$. Next we show that if the generator $-A$ of the bounded $C_0$-semigroup has a bounded inverse, then $\sup_{t \geq 0} |e{-tA{-1}} A{-\alpha} | < \infty$ for all $\alpha >0$. We also present an estimate for the rate of decay of $|e{-tA{-1}} A{-1} |$, assuming that $(e{-tA})_{t \geq 0}$ is polynomially stable. To obtain these results, we use operator norm estimates offered by a functional calculus called the $\mathcal{B}$-calculus.
- Decompositions of a Krein space in regular subspaces invariant under a uniformly bounded C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup of bi-contractions. J. Funct. Anal., 211:324–354, 2004.
- Polynomial stability of operator semigroups. Math. Nachr., 279:1425–1440, 2006.
- C. J. K. Batty and T. Duyckaerts. Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equations, 8:765–780, 2008.
- A Besov algebra calculus for generators of operator semigroups and related norm-estimates. Math. Ann., 379:23–93, 2021.
- The theory of Besov functional calculus: developments and applications to semigroups. J. Funct. Anal., 281, Art. no. 109089, 60 pp., 2021.
- P. Brenner and V. Thomée. On rational approximations of semigroups. SIAM J. Numer. Anal., 16:683–694, 1979.
- Semi-uniform stability of operator semigroups and energy decay of damped waves. Philos. Trans. Roy. Soc. A, 378: Art. no. 20190614 , 24 pp., 2020.
- R. deLaubenfels. Inverses of generators. Proc. Amer. Math. Soc., 104:443–448, 1988.
- R. deLaubenfels. Inverses of generators of nonanalytic semigroups. Studia Math., 191:11–38, 2009.
- T. Eisner. Stability of Operators and Operator Semigroups. Basel: Birkhäuser, 2010.
- T. Eisner and H. Zwart. The growth of a C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup characterised by its cogenerator. J. Evol. Equations, 8, 2008.
- K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. New York: Springer, 2000.
- S. Fackler. A short counterexample to the inverse generator problem on non-Hilbertian reflexive Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Arch. Math., 106:383–389, 2016.
- A. Gomilko. Cayley transform of the generator of a uniformly bounded C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup of operators. Ukrainian Math. J., 56:1212–1226, 2004.
- A. Gomilko. Inverses of semigroup generators: a survey and remarks. In Études opératorielles, Banach Center Publ., vol. 112, Polish Acad. Sci., Warsaw, pages 107–142, 2017.
- A. Gomilko and Yu. Tomilov. Rational approximation of operator semigroups via the ℬℬ\mathcal{B}caligraphic_B-calculus. J. Funct. Anal., 287, Art. no. 110426, 39 pp., 2024.
- Growth of semigroups in discrete and continuous time. Studia Math., 206:273–292, 2011.
- Inverse operator of the generator of a C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup. Sb. Math., 198:1095–1110, 2007.
- B.-Z. Guo and H. Zwart. On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform. Integral Equations Operator Theory, 54:349–383, 2006.
- M. Haase. The Functional Calculus for Sectorial Operators. Basel: Birkhäuser, 2006.
- H. Komatsu. Fractional powers of operators. Pacific J. Math., 19:285–346, 1966.
- S. Piskarev and H. Zwart. Crank-Nicolson scheme for abstract linear systems. Numer. Funct. Anal. Optim., 28:717–736, 2007.
- M. Wakaiki. The Cayley transform of the generator of a polynomially stable C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup. J. Evol. Equations, 21:4575–4597, 2021.
- M. Wakaiki. Decay rate of exp(A−1t)A−1superscript𝐴1𝑡superscript𝐴1\exp(A^{-1}t)A^{-1}roman_exp ( italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_t ) italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT on a Hilbert space and the Crank–Nicolson scheme with smooth initial data. Integral Equations Operator Theory, 95, Art. no. 28, 24 pp., 2023.
- H. Zwart. Growth estimates for exp(A−1t)superscript𝐴1𝑡\exp(A^{-1}t)roman_exp ( italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_t ) on a Hilbert space. Semigroup Forum, 74:487–494, 2007.
- H. Zwart. Is A−1superscript𝐴1A^{-1}italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT an infinitesimal generator? In Perspectives in operator theory, Banach Center Publ., vol. 75, Polish Acad. Sci., Warsaw, pages 303–313, 2007.