Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Economic Forecasts Using Many Noises (2312.05593v2)

Published 9 Dec 2023 in econ.EM and stat.ME

Abstract: This paper addresses a key question in economic forecasting: does pure noise truly lack predictive power? Economists typically conduct variable selection to eliminate noises from predictors. Yet, we prove a compelling result that in most economic forecasts, the inclusion of noises in predictions yields greater benefits than its exclusion. Furthermore, if the total number of predictors is not sufficiently large, intentionally adding more noises yields superior forecast performance, outperforming benchmark predictors relying on dimension reduction. The intuition lies in economic predictive signals being densely distributed among regression coefficients, maintaining modest forecast bias while diversifying away overall variance, even when a significant proportion of predictors constitute pure noises. One of our empirical demonstrations shows that intentionally adding 300~6,000 pure noises to the Welch and Goyal (2008) dataset achieves a noteworthy 10% out-of-sample R square accuracy in forecasting the annual U.S. equity premium. The performance surpasses the majority of sophisticated machine learning models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.