Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-Term Rate-Fairness-Aware Beamforming Based Massive MIMO Systems (2312.05557v1)

Published 9 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: This is the first treatise on multi-user (MU) beamforming designed for achieving long-term rate-fairness in fulldimensional MU massive multi-input multi-output (m-MIMO) systems. Explicitly, based on the channel covariances, which can be assumed to be known beforehand, we address this problem by optimizing the following objective functions: the users' signal-toleakage-noise ratios (SLNRs) using SLNR max-min optimization, geometric mean of SLNRs (GM-SLNR) based optimization, and SLNR soft max-min optimization. We develop a convex-solver based algorithm, which invokes a convex subproblem of cubic time-complexity at each iteration for solving the SLNR maxmin problem. We then develop closed-form expression based algorithms of scalable complexity for the solution of the GMSLNR and of the SLNR soft max-min problem. The simulations provided confirm the users' improved-fairness ergodic rate distributions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. L. D. Nguyen, H. D. Tuan, T. Q. Duong, and H. V. Poor, “Multi-user regularized zero-forcing beamforming,” IEEE Trans. Signal Process., vol. 67, no. 11, pp. 2839–2853, Jun. 2019.
  2. L. D. Nguyen, H. D. Tuan, T. Q. Duong, H. V. Poor, and L. Hanzo, “Energy-efficient multi-cell massive MIMO subject to minimum user-rate constraints,” IEEE Trans. Commun., vol. 69, no. 2, pp. 914–928, Feb. 2021.
  3. A. M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2563–2579, Oct. 2002.
  4. A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint spatial division and multiplexing: The large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.
  5. E. Bjornson, R. Zakhour, D. Gesbert, and B. Ottersten, “Cooperative multicell precoding: Rate region characterization and distributed strategies with instantaneous and statistical CSI,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4298–4310, Aug. 2010.
  6. C. Zhang, Y. Huang, Y. Jing, S. Jin, and L. Yang, “Sum-rate analysis for massive MIMO downlink with joint statistical beamforming and user scheduling,” IEEE Trans. Wirel. Commun., vol. 16, no. 4, pp. 2181–2194, Apr. 2017.
  7. X. Li, C. Li, S. Jin, and X. Gao, “Interference coordination for 3-D beamforming-based hetnet exploiting statistical channel-state information,” IEEE Trans. Wirel. Commun., vol. 17, no. 10, pp. 6887–6900, Oct. 2018.
  8. S. Qiu, D. Gesbert, D. Chen, and T. Jiang, “A covariance-based hybrid channel feedback in FDD massive MIMO systems,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8365–8377, Dec. 2019.
  9. H. Liu, X. Yuan, and Y. J. Zhang, “Statistical beamforming for FDD downlink massive MIMO via spatial information extraction and beam selection,” IEEE Trans. Wirel. Commun., vol. 18, no. 7, pp. 4617–4631, Jul. 2020.
  10. X. Li, Z. Liu, N. Qin, and S. Jin, “FFR based joint 3D beamforming interference coordination for multi-cell FD-MIMO downlink transmission systems,” IEEE Trans. Veh. Techn., vol. 69, no. 3, pp. 3015–3118, Mar. 2020.
  11. M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Trans. Wirel. Commun., vol. 7, no. 5, pp. 1711–1721, May 2007.
  12. K. Mullen, “A note on the ratio of two independent random variables,” Amer. Stat., vol. 21, no. 3, pp. 30–31, Jun. 1967.
  13. R. Zhang and L. Hanzo, “Cooperative downlink multicell preprocessing relying on reduced-rate back-haul data exchange,” IEEE Trans. Veh. Techn., vol. 60, no. 2, pp. 539–545, Feb 2011.
  14. J. Park, G. Lee, Y. Sung, and M. Yukawa, “Coordinated beamforming with relaxed zero forcing: The sequential orthogonal projection combining method and rate control,” IEEE Trans. Signal Process, vol. 61, no. 12, pp. 3100–3112, Jun. 2013.
  15. D. Kim, G. Lee, and Y. Sung, “Two-stage beamformer design for massive MIMO downlink by trace quotient formulation,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2200–2211, Jun. 2015.
  16. X. Li, S. Jin, X. Gao, and R. W. Heath, “Three-dimensional beamforming for large-scale FD-MIMO systems exploiting statistical channel state information,” IEEE Trans. Veh. Techn., vol. 65, no. 11, pp. 8992–9005, Nov. 2016.
  17. Y. Song, C. Liu, W. Wang, N. Cheng, M. Wang, W. Zhuang, and X. Shen, “Domain selective precoding in 3-D massive MIMO systems,” IEEE J. Select. Topics Signal Process., vol. 13, no. 5, pp. 1103–1117, May 2019.
  18. A. Lozano, “Long-term transmit beamforming for wireless multicasting,” in Proc. 2007 IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP 07), 2007, pp. III–417–III–420.
  19. Y.-P. Lin, “Hybrid MIMO-OFDM beamforming for wideband mmWave channels without instantaneous feedback,” IEEE Trans. Signal Process., vol. 66, no. 19, pp. 5142–5151, Oct. 2018.
  20. D. Ying, F. W. Vook, T. A. Thomas, D. J. Love, and A. Ghosh, “Kronecker product correlation model and limited feedback codebook design in a 3D channel model,” in Proc. 2014 IEEE Inter. Conf. Commun. (ICC), 2014, pp. 5865–5870.
  21. Q.-U.-A. Nadeem, A. Kammoun, and M.-S. Alouini, “Elevation beamforming with full dimension MIMO architectures in 5G systems: A tutorial,” IEEE Commun. Surv. Tut., vol. 21, no. 4, pp. 3238–3273, 2019.
  22. W. Zhu, H. D. Tuan, E. Dutkiewicz, Y. Fang, and L. Hanzo, “Low-complexity Pareto-optimal 3D beamforming for the full-dimensional multi-user massive MIMO downlink,” IEEE Trans. Veh. Tech., vol. 72, no. 7, pp. 8869–8885, Jul. 2023.
  23. A. Alkhateeb, G. Leus, and R. W. Heath, “Multi-layer precoding: A potential solution for full-dimensional massive MIMO systems,” IEEE Trans. Wirel. Commun., vol. 16, no. 3, pp. 5810–5824, Mar. 2017.
  24. J. Kang, O. Simeone, J. Kang, and S. Shamai, “Layered downlink precoding for C-RAN systems with full dimensional MIMO,” IEEE Trans. Veh. Techn., vol. 66, no. 3, pp. 2170–2182, Mar. 2017.
  25. Z. Wang, W. Liu, C. Qian, S. Chen, and L. Hanzo, “Two-dimensional precoding for 3-D massive MIMO,” IEEE Trans. Veh. Techn., vol. 66, no. 6, pp. 5488–5493, Jun. 2017.
  26. H. Yu, H. D. Tuan, E. Dutkiewicz, H. V. Poor, and L. Hanzo, “Maximizing the geometric mean of user-rates to improve rate-fairness: Proper vs. improper Gaussian signaling,” IEEE Trans. Wirel. Commun., vol. 21, no. 1, pp. 295–309, Jan. 2022.
  27. H. D. Tuan, A. A. Nasir, H. Q. Ngo, E. Dutkiewicz, and H. V. Poor, “Scalable user rate and energy-efficiency optimization in cell-free massive MIMO,” IEEE Trans. Commun., vol. 70, no. 9, pp. 6050–6065, Sept. 2022.
  28. W. Zhu, H. D. Tuan, E. Dutkiewicz, and L. Hanzo, “Collaborative beamforming aided fog radio access networks,” IEEE Trans. Veh. Techn., vol. 71, no. 7, pp. 7805–7820, Jul. 2022.
  29. 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), Sophia Antipolis Cedex, France, Tech. Rep. TR 38.901 (V14.2.0), Sep. 2017. [Online]. Available: http:// www.3gpp.org/.
  30. P. Patcharamaneepakorn, S. Armour, and A. Doufex, “On the equivalence between SLNR and MMSE precoding schemes with single-antenna receivers,” IEEE Commun. Lett., vol. 16, no. 3, pp. 1034–1037, Mar. 2012.
  31. E. Bjornson and E. Jorswieck, “Optimal resource allocation in coordinated multi-cell systems,” Found. Trends Commun. Inf. Theory, vol. 9, no. 23, pp. 113–381, 2013.
  32. R. Jain, D.-M. Chiu, and W. R. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared computer systems,” Digital Equipment, Tech. Rep. DEC-TR-301, Sept. 1984.
  33. H. H. M. Tam, H. D. Tuan, and D. T. Ngo, “Successive convex quadratic programming for quality-of-service management in full-duplex MU-MIMO multicell networks,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2340–2353, Jun. 2016.

Summary

We haven't generated a summary for this paper yet.