Enabling Normally-off In-Situ Computing with a Magneto-Electric FET-based SRAM Design (2312.05212v1)
Abstract: As an emerging post-CMOS Field Effect Transistor, Magneto-Electric FETs (MEFETs) offer compelling design characteristics for logic and memory applications, such as high-speed switching, low power consumption, and non-volatility. In this paper, for the first time, a non-volatile MEFET-based SRAM design named ME-SRAM is proposed for edge applications which can remarkably save the SRAM static power consumption in the idle state through a fast backup-restore process. To enable normally-off in-situ computing, the ME-SRAM cell is integrated into a novel processing-in-SRAM architecture that exploits a hardware-optimized bit-line computing approach for the execution of Boolean logic operations between operands housed in a memory sub-array within a single clock cycle. Our device-to-architecture evaluation results on Binary convolutional neural network acceleration show the robust performance of ME- SRAM while reducing energy consumption on average by a factor of 5.3 times compared to the best in-SRAM designs.
- M. K. Q. Jooq, M. H. Moaiyeri, and K. Tamersit, “A new design paradigm for auto-nonvolatile ternary srams using ferroelectric cntfets: From device to array architecture,” IEEE TED, vol. 69, pp. 6113–6120, 2022, doi: 10.1109/TED.2022.3207703.
- M. Morsali, S. Tabrizchi, A. Marshall, A. Roohi, D. Misra, and S. Angizi, “Design and evaluation of a near-sensor magneto-electric fet-based event detector,” IEEE TED, 2023, doi: 10.1109/TED.2023.3296389.
- S. Angizi, S. Tabrizchi, D. Z. Pan, and A. Roohi, “Pisa: A non-volatile processing-in-sensor accelerator for imaging systems,” IEEE Transactions on Emerging Topics in Computing, 2023.
- P. Dowben, D. Nikonov, A. Marshall, and C. Binek, “Magneto-electric antiferromagnetic spin–orbit logic devices,” Applied Physics Letters, vol. 116, no. 8, p. 080502, 2020, doi: 10.1063/1.5141371.
- C. Ma, Y. Wang, Z. Shen, R. Chen, Z. Wang, and Z. Shao, “Mnftl: An efficient flash translation layer for mlc nand flash memory,” ACM TODAES, vol. 25, pp. 1–19, 2020, doi: 10.1145/3398037.
- P. A. Dowben, C. Binek, K. Zhang, L. Wang, W.-N. Mei, J. P. Bird, U. Singisetti, X. Hong, K. L. Wang, and D. Nikonov, “Towards a strong spin–orbit coupling magnetoelectric transistor,” IEEE JxCDC, vol. 4, no. 1, pp. 1–9, 2018, doi: 10.1109/JXCDC.2018.2809640.
- Y. Pan, P. Ouyang, Y. Zhao, W. Kang, S. Yin, Y. Zhang, W. Zhao, and S. Wei, “A multilevel cell stt-mram-based computing in-memory accelerator for binary convolutional neural network,” IEEE TMAG, no. 99, pp. 1–5, 2018, doi: 10.1109/TMAG.2018.2848625.
- X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K. Roy, “Spin-transfer torque devices for logic and memory: Prospects and perspectives,” IEEE TCAD, vol. 35, no. 1, pp. 1–22, 2015, doi: 10.1109/TCAD.2015.2481793.
- D. E. Nikonov and I. A. Young, “Benchmarking of beyond-cmos exploratory devices for logic integrated circuits,” IEEE JxCDC, vol. 1, pp. 3–11, 2015, doi: 10.1109/JXCDC.2015.2418033.
- S. Angizi, Z. He, F. Parveen, and D. Fan, “Imce: Energy-efficient bit-wise in-memory convolution engine for deep neural network,” in 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2018, pp. 111–116.
- S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-pim: an energy-efficient comparator-based processing-in-memory neural network accelerator,” in Proceedings of the 55th Annual Design Automation Conference, 2018, pp. 1–6.
- M. Abedin, A. Roohi, M. Liehr, N. Cady, and S. Angizi, “Mr-pipa: An integrated multilevel rram (hfo x)-based processing-in-pixel accelerator,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 8, no. 2, pp. 59–67, 2022.
- N. Sharma, C. Binek, A. Marshall, J. Bird, P. Dowben, and D. Nikonov, “Compact modeling and design of magneto-electric transistor devices and circuits,” in IEEE SOCC. IEEE, 2018, pp. 146–151, doi: 10.1109/SOCC.2018.8618494.
- A. Mahmood, W. Echtenkamp, M. Street, J.-L. Wang, S. Cao, T. Komesu, P. A. Dowben, P. Buragohain, H. Lu, A. Gruverman, A. Parthasarathy, S. Rakheja, and C. Binek, “Voltage controlled néel vector rotation in zero magnetic field,” Nature communications, vol. 12, no. 1, pp. 1–8, 2021, doi: 10.1038/s41467-021-21872-3.
- H.-J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tomanek, and Z. Zhou, “Low-resistance 2d/2d ohmic contacts: a universal approach to high-performance wse2, mos2, and mose2 transistors,” Nano letters, vol. 16, no. 3, pp. 1896–1902, 2016, doi: 10.1021/acs.nanolett.5b05066.
- M. Anantram, M. S. Lundstrom, and D. E. Nikonov, “Modeling of nanoscale devices,” Proceedings of the IEEE, vol. 96, no. 9, pp. 1511–1550, 2008, doi: 10.1109/JPROC.2008.927355.
- A. Iyama and T. Kimura, “Magnetoelectric hysteresis loops in cr 2 o 3 at room temperature,” Physical Review B, vol. 87, no. 18, p. 180408, 2013, doi: 10.1103/PhysRevB.87.180408.
- N. Sharma, A. Marshall, J. Bird, and P. Dowben, “Verilog-a based compact modeling of the magneto-electric fet device,” in E3S. IEEE, 2017, pp. 1–3, doi: 10.1109/E3S.2017.8246186.
- X. Fong, S. K. Gupta, N. N. Mojumder, S. H. Choday, C. Augustine, and K. Roy, “Knack: A hybrid spin-charge mixed-mode simulator for evaluating different genres of spin-transfer torque mram bit-cells,” in IEEE SISPAD. IEEE, 2011, pp. 51–54, doi: 10.1109/SISPAD.2011.6035047.
- X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance, energy, and area model for emerging nonvolatile memory,” IEEE TCAD, vol. 31, pp. 994–1007, 2012, doi: 10.1109/TCAD.2012.2185930.
- K. Ali, F. Li, S. Y. Lua, and C.-H. Heng, “Energy efficient reduced area overhead spin-orbit torque non-volatile srams,” pp. 2275–2280, 2020, doi: 10.1109/IECON43393.2020.9254623.
- C. Wang, D. Zhang, K. Zhang, L. Zeng, Y. Wang, Z. Hou, Y. Zhang, and W. Zhao, “Magnetic nonvolatile sram based on voltage-gated spin-orbit-torque magnetic tunnel junctions,” IEEE TED, vol. 67, no. 5, pp. 1965–1971, 2020, doi: 10.1109/TED.2020.2982683.
- S. Tripathi, S. Choudhary, and P. K. Misra, “A novel stt–sot mtj-based nonvolatile sram for power gating applications,” IEEE TED, vol. 69, no. 3, pp. 1058–1064, 2022, doi: 10.1109/TED.2022.3140407.
- A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-sram: Enabling in-memory boolean computations in cmos static random access memories,” IEEE TCASI, vol. 65, no. 12, pp. 4219–4232, 2018, doi: 10.1109/TCSI.2018.2848999.
- S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das, “Compute caches,” in HPCA. IEEE, 2017, pp. 481–492, doi: 10.1109/HPCA.2017.21.
- J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and D. Sylvester, “A 28-nm compute sram with bit-serial logic/arithmetic operations for programmable in-memory vector computing,” IEEE JSSC, vol. 55, no. 1, pp. 76–86, 2019, doi: 10.1109/JSSC.2019.2939682.
- Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada, S. Miyoshi, M. Yasuda, D. Blaauw, and D. Sylvester, “A 4 + 2t sram for searching and in-memory computing with 0.3-v vddminsubscript𝑣ddminv_{\mathrm{ddmin}}italic_v start_POSTSUBSCRIPT roman_ddmin end_POSTSUBSCRIPT,” IEEE JSSC, vol. 53, no. 4, pp. 1006–1015, 2017, doi: 10.1109/JSSC.2017.2776309.
- S. Angizi, M. Morsali, S. Tabrizchi, and A. Roohi, “A near-sensor processing accelerator for approximate local binary pattern networks,” IEEE TETC, 2023, doi: 10.1109/TED.2023.3296389.