Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Soliro -- a hybrid dynamic tilt-wing aerial manipulator with minimal actuators (2312.05110v1)

Published 8 Dec 2023 in cs.RO

Abstract: The ability to enter in contact with and manipulate physical objects with a flying robot enables many novel applications, such as contact inspection, painting, drilling, and sample collection. Generally, these aerial robots need more degrees of freedom than a standard quadrotor. While there is active research of over-actuated, omnidirectional MAVs and aerial manipulators as well as VTOL and hybrid platforms, the two concepts have not been combined. We address the problem of conceptualization, characterization, control, and testing of a 5DOF rotary-/fixed-wing hybrid, tilt-rotor, split tilt-wing, nearly omnidirectional aerial robot. We present an elegant solution with a minimal set of actuators and that does not need any classical control surfaces or flaps. The concept is validated in a wind tunnel study and in multiple flights with forward and backward transitions. Fixed-wing flight speeds up to 10 m/s were reached, with a power reduction of 30% as compared to rotary wing flight.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. A. M. Kamal and A. Ramirez-Serrano, “Design methodology for hybrid (vtol+ fixed wing) unmanned aerial vehicles,” Aeronautics and Aerospace Open Access Journal, vol. 2, no. 3, pp. 165–176, 2018.
  2. D. Rohr, M. Studiger, T. Stastny, N. R. J. Lawrance, and R. Siegwart, “Nonlinear model predictive velocity control of a vtol tiltwing uav,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5776–5783, 2021.
  3. A. Lindqvist, E. Fresk, and G. Nikolakopoulos, “Optimal design and modeling of a tilt wing aircraft,” in 2015 23rd Mediterranean Conference on Control and Automation (MED), pp. 701–708, 2015.
  4. K. Bodie, M. Brunner, M. Pantic, S. Walser, P. Pfändler, U. Angst, R. Siegwart, and J. Nieto, “Active interaction force control for contact-based inspection with a fully actuated aerial vehicle,” IEEE Transactions on Robotics, vol. 37, no. 3, pp. 709–722, 2021.
  5. P. Zheng, X. Tan, B. B. Kocer, E. Yang, and M. Kovac, “Tiltdrone: A fully-actuated tilting quadrotor platform,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6845–6852, 2020.
  6. S. Park, J. Lee, J. Ahn, M. Kim, J. Her, G.-H. Yang, and D. Lee, “Odar: Aerial manipulation platform enabling omnidirectional wrench generation,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 4, pp. 1907–1918, 2018.
  7. D. Brescianini and R. D’Andrea, “An omni-directional multirotor vehicle,” Mechatronics, vol. 55, pp. 76–93, 2018.
  8. R. Watson, M. Kamel, D. Zhang, G. Dobie, C. MacLeod, S. G. Pierce, and J. Nieto, “Dry coupled ultrasonic non-destructive evaluation using an over-actuated unmanned aerial vehicle,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 2874–2889, 2022.
  9. E. N. Jacobs and A. Sherman, “Airfoil section characteristics as affected by variations of the reynolds number,” NACA Technical Report, vol. 586, no. 1, pp. 227–267, 1937.
  10. D. Rohr, T. Stastny, S. Verling, and R. Siegwart, “Attitude and cruise control of a vtol tiltwing uav,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2683–2690, 2019.
  11. D. Brescianini, M. Hehn, and R. D’Andrea, “Nonlinear quadrocopter attitude control: Technical report,” tech. rep., ETH Zurich, 2013.
  12. PX4, PX4 Autopilot. Available at https://github.com/PX4/PX4-Autopilot.git.
  13. K. Bruce, J. Kelly, and L. PERSON, JR, “Nasa b737 flight test results of the total energy control system,” in Astrodynamics Conference, p. 2143, 1986.

Summary

We haven't generated a summary for this paper yet.