Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$S$-Integral Points in Orbits on $\mathbb{P}^1$ (2312.05094v1)

Published 8 Dec 2023 in math.NT and math.DS

Abstract: Let $K$ be a number field and $S$ a finite set of places of $K$ that contains all of the archimedean places. Let $\varphi: \mathbb{P}1 \to \mathbb{P}1$ be a rational map of degree $d \geq 2$ defined over $K$. Given $\alpha \in \mathbb{P}1(K)$ non-preperiodic and $\beta \in \mathbb{P}1(K)$ non-exceptional, we prove an upper bound of the form $O(|S|{1+\epsilon})$ on the number of points in the forward orbit of $\alpha$ that are $S$-integral relative to $\beta$, extending results of Hsia--Silverman [HS11]. When $\varphi$ is a power or Latt`es map, we obtain a stronger upper bound of the form $O(|S|)$. We also prove uniform bounds when $\varphi$ is a polynomial, extending results of Krieger et al [KLS+15].

Summary

We haven't generated a summary for this paper yet.